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some results for the algebraic area of biased random walks
their relation to "Hofstadter” quantum mechanics
— Trace 1dentities
— Combinatorics



algebraic area of a closed random walk on a square lattice

defined in terms of its n-Winding Sectors

= points enclosed n times by the walk






S, = area of the n-winding sectors inside the walk

= algebraic area A = Z nSy

J1——0Q

in the example above :

A=—1Xx14+—-1x14+0x1+1x214+2x2=23



question :

consider all closed random walks starting from and returning to a given
point after N steps
(A) =Y _.n(S,) =0 obvious

what is the algebraic area probability distribution Py(A) ?

a difficult problem
in the continuous limit N — oo, lattice spacing a — 0 = Brownian curves “time” t = Na’

Py(A) — P;(A) is known (easy) = Levy’s law



mapping on a quantum particle in a | B field

= P;(A) = Fourier transform of Landau partition function Zp s,dau(B)

i i dB ZLandau(B) o~ iBA
2T J - ZLandau (O)

= Pi(A)
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for the case of discrete random walks on a lattice :
mapping on a quantum particle on a lattice in a 1 B field
= Hofstadter Hamiltonian

Hy=T 4T '+ T+ T,

VY= 2nd /Py flux per unit cell



T, = ei(Px_eAX)/h Ty — ei(Py_eAy)/ﬁ

LT, = e "TI,T;

Cn(A)

define Cy(A) = number of closed random walks of N steps with area A = Py (A) = T Cn(A)

, oo s Z B E=y .
continuous dA Pi(A) P4 = Landau (B) —discrete ) Cy(A) e = Trace H\](V
—o0 ZLandau (O) A=—o0

replace eV — Q
YAZ Cy(A) ™ = ¥, Cn(A)Q* = Zy(Q) = generating function for the Cy(A)’s

Zn(Q = €') = Trace Hév

Trace identity (Bellissard (1997))



little is known exactly on the Cy(A)’s or on Trace H{(V
atrivial case : Y=0<Q=1—=Zy(Q) = Y4 Cn(A)Q% 0=1 = L4 Cn(A)

& N-steps closed random walks counting :
N steps = M steps right/left ©(N —2M) /2 steps up/down

N/2 N 1, [T [T v
Zn(Q=1)= : = (— / / 2cosk,+2cosk, )" dk.dk
N(Q ) MZ:()M!z(NZZM)!z (271.) i —n( y) y

2cosky +2cosk, is the spectrum of the Hofstadter Hamiltonian when y= 0
Ho=T+T '+, +T, "
]—;C — eipX/ﬁ TS} p— eipy/ﬁ
Bloch eigenstates : ¥y ki ky € |—T, 7]

eigenenergies : e/’ + e~ *x 4 Ky 4 ek = 2 cosk, +2cos ky
— Zn(Q = 1) = TraceH))






a solvable case:

random walks biased to go only to the right

never to the left
\

out[22]=




M steps right L steps up BL, steps down
one knows the generating function Zy 1, 1,(Q) for the Cp 1, 1,(A)’s

S. Mashkevich, S.O. (2009)

, ) min%’LZ) [(M+L1 +L2> (M+L1 +L2>] <M+L1 - k) (M+L2 - k)
M.L,,L = o
1,42 = k k—1 M Q—l M Q

involves Q-binomial, Q-factorials
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(1+Q+...+ QN _1) = Q-deformation of the integer N

algebraic area < non commuting space < Q-deformation



we are looking at a Trace i1dentity which would be analogous to

Zn(Q = e'¥) = Trace H{(V

= we still need “closed” walks after N = M + L; + L, steps

= starting point and ending point on the same horizontal axis : L1 = L
N=M+L+L,=L=L,=(N—-M)/2

N steps = M steps right ©(N — M) /2 steps up B(N — M) /2 steps down
still one has to identify the starting point and the ending point :

boundary conditions (see later)



on which quantum model are mapped these biased ’closed” random walks ?

one way : look again at Q = 1 < random walks counting

L L (M—I—Ll—i—Lz)!
Iy 1, (Q=1)= ML 'L,

total number of N-steps biased eandom walks :

y Q=1=y L ™
Z.,n-u Nn-M(Q=1)= — :—/ +1+2cosk,)" dk
e T2 M:OM!(NTM)!2 21 J-m ’ ’

— Spectrum
+1+2cosk,

corresponds to quantum Hamiltonian with only right hoppings on the
horizontal axis
Hy=T,+T,+ Ty_1

eigenstates
eikxx eikyy



eigenenergies
efx etk ey = okx 4 D cos ky

if one restricts Hilbert space to real spectrum then k, = 0, £7
1 +2cosk,

k., = boundary conditions  ky, = quantum number
takenow Q# 1< v#0

— mapping on non Hermitian "Hofstadter” model
_ —1
Hy =T+ T, + T,
I,Ty = e VI, T,

— Trace i1dentity ?
Y Ly N-M N (Q =€) = Trace Hév
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on the quantum mechanics side :
non Hermitian Hamiltonian 1s solvable

— spectrum 1s known in the commensurate case Y = 27t§

in fact y = 277‘ (spectrum does not depend on p)

for a given g : eigenstates E,(r)

ks /2 k 1
arccos|e'? /2 + cos(gky)] +onl,

q q

E,(r) =2cos

complex eigenenergies for certain k, (non Hermitian)

r=1,2,..

5 q



Trace 1s

1 T 1 q
N _ N
TraCC H’Y:275/q p— ﬁ /_n dkyg r:EI Eq(l")

Trace identity :
use quantum lattice is g-periodic on the x-axis (up to phase eldkx)
— g-periodic sum over M :

one verifies (Mathematica) S. Matveenko, S.0O. (2013)

Z Zy N-m N-m (Q= >/ q)eika = Trace Hé\; /g



what have we learned from quantum mechanics :
1) "g-periodic” walks M = 0,q,2q, ... = multiple of g
11) generating function evaluated at roots of unity Q = e'2r/a
we notice that in the Trace identity each term
Zyg v 1 (@ = €70
with M = 0,q,2q, ... 1s an integer

why integers show up and what is their combinatorial meaning (if any) ?

S. Mashkevich, S.O., A. Polychronakos (2014)



why integers ?

due to well-known Q-binomial identity : when M multiple of ¢

M+L
(MA;_L> sy = ([ Aq/l }) — an integer

—e 7 14
Q=e g

21T

= when Q =e¢ ¢ the (M,L;,L;) walks algebraic area generating function

, ) min%’LZ) [(M+L1 +L2> (M+L1 +L2>] <M+L1 - k) (M+L2 - k)
M.L,,L = o
1,2 = k k—1 M Q—l M Q

= an integer when M multiple of ¢



M multiple of g = simplify further by taking also L; — L, multiple of ¢

in particular when g =2 — Q = —1

L1 —|—L2 M+L21+L2
ZMaLlaLZ(Q — _1) — Ll L] +L2

2

even more generally for unbiaised (M, M, Ly, L;) walks
take both M| — M, and L1 — L, multiple of ¢

again wheng =2 — Q= —1

Ll —|—L2 Ml +M2 M1—|—M22—{—L1—|—L2
ZMI 7M27L1 7L2(Q — _1) — Ll ]\41 L] +L2
2




simple expressions : combinatorial meaning ?
qg =2 — Q = —1 1s well-known in combinatorics
as the Q = —1 Stembridge phenomenon

particular case of the more general Q = root of unity Sieving phenomenon



Sieving paramount example :

i) collection of the L-subsets of the (M + L)-set = {1,2,.... M+ L}

11) generating function (MZFL) 0= Q-binomial

111) ¢ = cycling generator acting by cycling 1 -+2,2 =-3,... M+L — 1

Sieving : (MZFL) o evaluated at Q = exp(2inp/(M + L)) counts the number

of the L-subsets which are fixed by c”

example : M =2, L = 2 one has (2452)(2 =14+Q+2Q°+Q* +¢q*
p=2—Q=exp(2in2/(2+2)) = —1<« Stembridge
1+Q+2Q°+Q°+Q*=2

2 is the number of the 2-subsets of {1,2,3,4} fixed by ¢?: {1,3} <+ {2,4}
p=1,3=1+Q+2Q*+ Q>+ Q*= 0= no 2-subset fixed by c or ¢’

p=4—Q=1= = 6= all 2-subsets fixed by ¢* = 1 (trivial)



one to one mapping
the collection of the L-subsets of the (M + L)-set
—
the collection of (M, L) random walks = M-steps right ® L-steps up
for example :
{1,3} subset of {1,2,3,4} <+ Right-Up-Right-Up (M = 2,L = 2) walk

and not surprisingly the algebraic area generating function for (M, L) walks

M+L
Zy 1,=L1,-0(Q) = ( 7 )
Q

indeed reduces to the Q-binomial Sieving generating function



— Sieving interpretation of

L1 —|—L2 M1 —I—M2 M1-|—M22—|—L1—|—L2
My My Ly L (Q — _1) — L M, Li+L,

2

in terms of subsets of sets
a daunting question : Zys, m, 1,1, (Q) seems out of reach

still when taking both M| — M, and L; — L, multiple of g what could be the
generalization of the above formula to

21T

ZM] 7M27L1 7L2 (Q =C 1 )

— sum rule for the Hofstadter spectrum : Zy(Q = e?™%) = Trace Hf/V: /g
N/2

ZINQ) =Y Zumnp-mn2-m(Q)
M=0



Bonne continuation Alain

et merci pour tout !






