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some results for the algebraic area of biased random walks
their relation to ”Hofstadter” quantum mechanics

→ Trace identities
→ Combinatorics



algebraic area of a closed random walk on a square lattice

defined in terms of its n-Winding Sectors

= points enclosed n times by the walk
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Sn ≡ area of the n-winding sectors inside the walk

⇒ algebraic area A =
∞

∑
n=−∞

nSn

in the example above :

A =−1×1+−1×1+0×1+1×21+2×2 = 23



question :

consider all closed random walks starting from and returning to a given
point after N steps

⟨A⟩= ∑∞
n=−∞ n⟨Sn⟩= 0 obvious

what is the algebraic area probability distribution PN(A) ?

a difficult problem
in the continuous limit N → ∞, lattice spacing a → 0 ⇒ Brownian curves ”time” t = Na2

PN(A)→ Pt(A) is known (easy) = Levy’s law



mapping on a quantum particle in a ⊥ B field

⇒ Pt(A) = Fourier transform of Landau partition function ZLandau(B)

1
2π

∫ +∞

−∞
dB

ZLandau(B)
ZLandau(0)

e−iBA = Pt(A)

∫ +∞

−∞
dA Pt(A) eiBA =

ZLandau(B)
ZLandau(0)

for the case of discrete random walks on a lattice :

mapping on a quantum particle on a lattice in a ⊥ B field

≡ Hofstadter Hamiltonian

Hγ = Tx +T−1
x +Ty +T−1

y

γ ≡ 2πΦ/Φ0 flux per unit cell



Tx = ei(px−eAx)/h̄ Ty = ei(py−eAy)/h̄

TxTy = e−iγTyTx

define CN(A)≡ number of closed random walks of N steps with area A ⇒ PN(A) =
CN (A)

∑A CN (A)

continuous
∫ +∞

−∞
dA Pt(A) eiBA =

ZLandau(B)
ZLandau(0)

→ discrete
A=∞

∑
A=−∞

CN(A) eiγA =Trace HN
γ

replace eiγ → Q

∑A=∞
A=−∞ CN(A) eiγA → ∑A CN(A)QA ≡ ZN(Q) = generating function for the CN(A)’s

ZN(Q = eiγ) = Trace HN
γ

Trace identity (Bellissard (1997))



little is known exactly on the CN(A)’s or on Trace HN
γ

a trivial case : γ = 0 ⇔ Q = 1 → ZN(Q) = ∑A CN(A)QA|Q=1 = ∑A CN(A)

⇔ N-steps closed random walks counting :
N steps = M steps right/left ⊕(N −2M)/2 steps up/down

ZN(Q = 1)=
N/2

∑
M=0

N!
M!2(N−2M

2 )!2
=(

1
2π

)2
∫ π

−π

∫ π

−π
(2coskx+2cosky)

Ndkxdky

2coskx +2cosky is the spectrum of the Hofstadter Hamiltonian when γ = 0
H0 = Tx +T−1

x +Ty +T−1
y

Tx = eipx/h̄ Ty = eipy/h̄

Bloch eigenstates : eikxxeikyy kx,ky ∈ [−π,π]

eigenenergies : eikx + e−ikx + eiky + e−iky = 2coskx +2cosky

→ ZN(Q = 1) = TraceHN
0





a solvable case:

random walks biased to go only to the right

never to the left
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M steps right ⊕L1 steps up ⊕L2 steps down

one knows the generating function ZM,L1,L2(Q) for the CM,L1,L2(A)’s

S. Mashkevich, S.O. (2009)

ZM,L1,L2(Q)=
min(L1,L2)

∑
k=0

[(
M+L1 +L2

k

)
−
(

M+L1 +L2

k−1

)](
M+L1 − k

M

)
Q−1

(
M+L2 − k

M

)
Q

involves Q-binomial, Q-factorials(
N
M

)
Q
≡

[N]Q!
[M]Q![N −M]Q!

[N]Q! =
N

∏
i=1

1−Qi

1−Q
= 1(1+Q)(1+Q+Q2) · · ·(1+Q+ . . .+QN−1)

(1+Q+ . . .+QN−1) = Q-deformation of the integer N

algebraic area ⇔ non commuting space ⇔ Q-deformation



we are looking at a Trace identity which would be analogous to

ZN(Q = eiγ) = Trace HN
γ

⇒ we still need ”closed” walks after N = M+L1 +L2 steps

⇒ starting point and ending point on the same horizontal axis : L1 = L2

N = M+L1 +L2 ⇒ L1 = L2 = (N −M)/2

N steps = M steps right ⊕(N −M)/2 steps up ⊕(N −M)/2 steps down

still one has to identify the starting point and the ending point :

boundary conditions (see later)



on which quantum model are mapped these biased ”closed” random walks ?

one way : look again at Q = 1 ⇔ random walks counting

ZM,L1,L2(Q = 1) = (M+L1+L2)!
M!L1!L2!

total number of N-steps biased eandom walks :

N

∑
M=0

ZM,N−M
2 ,N−M

2
(Q = 1) =

N

∑
M=0

N!
M!(N−M

2 )!2
=

1
2π

∫ π

−π
(±1+2cosky)

Ndky

→ spectrum
±1+2cosky

corresponds to quantum Hamiltonian with only right hoppings on the
horizontal axis

H0 = Tx +Ty +T−1
y

eigenstates
eikxxeikyy



eigenenergies
eikx + eiky + e−iky = eikx +2cosky

if one restricts Hilbert space to real spectrum then kx = 0,±π

±1+2cosky

kx = boundary conditions ky = quantum number

take now Q ̸= 1 ⇔ γ ̸= 0

→ mapping on non Hermitian ”Hofstadter” model
Hγ = Tx +Ty +T−1

y

TxTy = e−iγTyTx

→ Trace identity ?
”∑M ” ZM,N−M

2 ,N−M
2

(Q = eiγ) = Trace HN
γ



on the quantum mechanics side :

non Hermitian Hamiltonian is solvable

→ spectrum is known in the commensurate case γ = 2π p
q

in fact γ = 2π
q (spectrum does not depend on p)

for a given q : eigenstates Eq(r)

Eq(r) = 2cos
[

arccos[eiqkx/2+ cos(qky)]

q
+2π

1
q

r
]

r = 1,2, . . . ,q

complex eigenenergies for certain ky (non Hermitian)



Trace is

Trace HN
γ=2π/q ≡

1
2π

∫ π

−π
dky

1
q

q

∑
r=1

Eq(r)N

Trace identity :

use quantum lattice is q-periodic on the x-axis (up to phase eiqkx )

→ q-periodic sum over M :

one verifies (Mathematica) S. Matveenko, S.O. (2013)

N

∑
M=0,q,2q,...

ZM,N−M
2 ,N−M

2
(Q = ei2π/q)eiMkx = Trace HN

γ=2π/q



what have we learned from quantum mechanics :

i) ”q-periodic” walks M = 0,q,2q, . . .= multiple of q

ii) generating function evaluated at roots of unity Q = ei2π/q

we notice that in the Trace identity each term
ZM,N−M

2 ,N−M
2

(Q = ei2π/q)

with M = 0,q,2q, . . . is an integer

why integers show up and what is their combinatorial meaning (if any) ?

S. Mashkevich, S.O., A. Polychronakos (2014)



why integers ?

due to well-known Q-binomial identity : when M multiple of q

(
M+L

M

)
Q=e

2iπp
q

=

([M+L
q

]
M
q

)
= an integer

⇒ when Q = e
2iπ
q the (M,L1,L2) walks algebraic area generating function

ZM,L1,L2(Q)=
min(L1,L2)

∑
k=0

[(
M+L1 +L2

k

)
−
(

M+L1 +L2

k−1

)](
M+L1 − k

M

)
Q−1

(
M+L2 − k

M

)
Q

= an integer when M multiple of q



M multiple of q ⇒ simplify further by taking also L1 −L2 multiple of q

in particular when q = 2 → Q =−1

ZM,L1,L2(Q =−1) =
(

L1 +L2

L1

)(M+L1+L2
2

L1+L2
2

)

even more generally for unbiaised (M1,M2,L1,L2) walks

take both M1 −M2 and L1 −L2 multiple of q

again when q = 2 → Q =−1

ZM1,M2,L1,L2(Q =−1) =
(

L1 +L2

L1

)(
M1 +M2

M1

)(M1+M2+L1+L2
2

L1+L2
2

)



simple expressions : combinatorial meaning ?

q = 2 → Q =−1 is well-known in combinatorics

as the Q =−1 Stembridge phenomenon

particular case of the more general Q = root of unity Sieving phenomenon



Sieving paramount example :

i) collection of the L-subsets of the (M+L)-set = {1,2, . . . ,M+L}

ii) generating function
(M+L

L

)
Q = Q-binomial

iii) c = cycling generator acting by cycling 1 → 2,2 → 3, . . . ,M+L → 1

Sieving :
(M+L

L

)
Q evaluated at Q = exp(2iπp/(M+L)) counts the number

of the L-subsets which are fixed by cp

example : M = 2, L = 2 one has
(2+2

2

)
Q = 1+Q+2Q2 +Q3 +Q4

p = 2 → Q = exp(2iπ2/(2+2)) =−1↔ Stembridge

1+Q+2Q2 +Q3 +Q4= 2

2 is the number of the 2-subsets of {1,2,3,4} fixed by c2 : {1,3}↔ {2,4}

p = 1,3 ⇒ 1+Q+2Q2 +Q3 +Q4= 0 ⇒ no 2-subset fixed by c or c3

p = 4 → Q = 1 ⇒= 6 ⇒ all 2-subsets fixed by c4 = 1 (trivial)



one to one mapping

the collection of the L-subsets of the (M+L)-set

↔

the collection of (M,L) random walks = M-steps right ⊕ L-steps up

for example :

{1,3} subset of {1,2,3,4} ↔ Right-Up-Right-Up (M = 2,L = 2) walk

and not surprisingly the algebraic area generating function for (M,L) walks

ZM,L1=L,L2=0(Q) =

(
M+L

L

)
Q

indeed reduces to the Q-binomial Sieving generating function



→ Sieving interpretation of

ZM1,M2,L1,L2(Q =−1) =
(

L1 +L2

L1

)(
M1 +M2

M1

)(M1+M2+L1+L2
2

L1+L2
2

)
in terms of subsets of sets

a daunting question : ZM1,M2,L1,L2(Q) seems out of reach

still when taking both M1 −M2 and L1 −L2 multiple of q what could be the
generalization of the above formula to

ZM1,M2,L1,L2(Q = e
2iπ
q )

→ sum rule for the Hofstadter spectrum : ZN(Q = e2iπ/q) = Trace HN
γ=2π/q

ZN(Q) =
N/2

∑
M=0

ZM,M,N/2−M,N/2−M(Q)



Bonne continuation Alain

et merci pour tout !




