Biaised and unbiased two-dimensional random walks and the Hofstadter model

LPTMS ORSAY CNRS/Université Paris-Sud

with S.Mashkevich Bogolyubov Inst, S.Matveenko Landau Inst, A.Polychronakos CUNY NY some results for the algebraic area of biased random walks
their relation to "Hofstadter" quantum mechanics
\rightarrow Trace identities
\rightarrow Combinatorics

algebraic area of a closed random walk on a square lattice

defined in terms of its n-Winding Sectors
$=$ points enclosed n times by the walk

$S_{n} \equiv$ area of the n-winding sectors inside the walk

$$
\Rightarrow \text { algebraic area } A=\sum_{n=-\infty}^{\infty} n S_{n}
$$

in the example above :

$$
A=-1 \times 1+-1 \times 1+0 \times 1+1 \times 21+2 \times 2=23
$$

question :

consider all closed random walks starting from and returning to a given point after N steps

$$
\langle A\rangle=\sum_{n=-\infty}^{\infty} n\left\langle S_{n}\right\rangle=0 \quad \text { obvious }
$$

what is the algebraic area probability distribution $P_{N}(A)$?
a difficult problem
in the continuous limit $N \rightarrow \infty$, lattice spacing $a \rightarrow 0 \Rightarrow$ Brownian curves "time" $t=N a^{2}$

$$
P_{N}(A) \rightarrow P_{t}(A) \text { is known (easy) = Levy's law }
$$

mapping on a quantum particle in a $\perp B$ field
$\Rightarrow P_{t}(A)=$ Fourier transform of Landau partition function $Z_{\text {Landau }}(B)$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{+\infty} d B \frac{Z_{\text {Landau }}(B)}{Z_{\text {Landau }}(0)} e^{-i B A}=P_{t}(A) \\
& \quad \int_{-\infty}^{+\infty} d A P_{t}(A) e^{i B A}=\frac{Z_{\text {Landau }}(B)}{Z_{\text {Landau }}(0)}
\end{aligned}
$$

for the case of discrete random walks on a lattice : mapping on a quantum particle on a lattice in a $\perp B$ field
\equiv Hofstadter Hamiltonian

$$
\begin{gathered}
H_{\gamma}=T_{x}+T_{x}^{-1}+T_{y}+T_{y}^{-1} \\
\gamma \equiv 2 \pi \Phi / \Phi_{0} \text { flux per unit cell }
\end{gathered}
$$

$$
\begin{gathered}
T_{x}=e^{i\left(p_{x}-e A_{x}\right) / \hbar} \quad T_{y}=e^{i\left(p_{y}-e A_{y}\right) / \hbar} \\
T_{x} T_{y}=e^{-i \gamma} T_{y} T_{x}
\end{gathered}
$$

define $C_{N}(A) \equiv$ number of closed random walks of N steps with area $A \Rightarrow P_{N}(A)=\frac{C_{N}(A)}{\sum_{A} C_{N}(A)}$

$$
\begin{gathered}
\text { continuous } \int_{-\infty}^{+\infty} d A P_{t}(A) e^{i B A}=\frac{Z_{\text {Landau }}(B)}{Z_{\text {Landau }}(0)} \rightarrow \text { discrete } \sum_{A=-\infty}^{A=\infty} C_{N}(A) e^{i \gamma A}=\text { Trace } H_{\gamma}^{N} \\
\text { replace } e^{i \gamma} \rightarrow \mathrm{Q} \\
\sum_{A=-\infty}^{A=\infty} C_{N}(A) e^{i \gamma A} \rightarrow \sum_{A} C_{N}(A) \mathrm{Q}^{A} \equiv Z_{N}(\mathrm{Q})=\text { generating function for the } C_{N}(A) \text { 's }
\end{gathered}
$$

$$
Z_{N}\left(\mathrm{Q}=e^{i \gamma}\right)=\text { Trace } H_{\gamma}^{N}
$$

Trace identity (Bellissard (1997))
little is known exactly on the $C_{N}(A)$'s or on Trace H_{γ}^{N}
a trivial case : $\gamma=0 \Leftrightarrow \mathrm{Q}=1 \rightarrow Z_{N}(\mathrm{Q})=\left.\sum_{A} C_{N}(A) \mathrm{Q}^{A}\right|_{\mathrm{Q}=1}=\sum_{A} C_{N}(A)$
$\Leftrightarrow N$-steps closed random walks counting :
N steps $=M$ steps right/left $\oplus(N-2 M) / 2$ steps up/down
$Z_{N}(\mathrm{Q}=1)=\sum_{M=0}^{N / 2} \frac{N!}{M!^{2}\left(\frac{N-2 M}{2}\right)!^{2}}=\left(\frac{1}{2 \pi}\right)^{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left(2 \cos k_{x}+2 \cos k_{y}\right)^{N} d k_{x} d k_{y}$
$2 \cos k_{x}+2 \cos k_{y}$ is the spectrum of the Hofstadter Hamiltonian when $\gamma=0$

$$
\begin{gathered}
H_{0}=T_{x}+T_{x}^{-1}+T_{y}+T_{y}^{-1} \\
T_{x}=e^{i p_{x} / \hbar} \quad T_{y}=e^{i p_{y} / \hbar}
\end{gathered}
$$

Bloch eigenstates : $e^{i k_{x} x} e^{i k_{y} y} \quad k_{x}, k_{y} \in[-\pi, \pi]$
eigenenergies : $e^{i k_{x}}+e^{-i k_{x}}+e^{i k_{y}}+e^{-i k_{y}}=2 \cos k_{x}+2 \cos k_{y}$

$$
\rightarrow Z_{N}(\mathrm{Q}=1)=\operatorname{Trace} H_{0}^{N}
$$

$$
4
$$

a solvable case:
random walks biased to go only to the right

M steps right $\oplus L_{1}$ steps up $\oplus L_{2}$ steps down

one knows the generating function $Z_{M, L_{1}, L_{2}}(\mathrm{Q})$ for the $C_{M, L_{1}, L_{2}}(A)$'s
S. Mashkevich, S.O. (2009)
$Z_{M, L_{1}, L_{2}}(\mathrm{Q})=\sum_{k=0}^{\min \left(L_{1}, L_{2}\right)}\left[\binom{M+L_{1}+L_{2}}{k}-\binom{M+L_{1}+L_{2}}{k-1}\right]\binom{M+L_{1}-k}{M}_{\mathrm{Q}^{-1}}\binom{M+L_{2}-k}{M}_{\mathrm{Q}}$
involves Q-binomial, Q-factorials

$$
\begin{gathered}
\binom{N}{M}_{\mathrm{Q}} \equiv \frac{[N]_{\mathrm{Q}}!}{[M]_{\mathrm{Q}}![N-M]_{\mathrm{Q}}!} \\
{[N]_{\mathrm{Q}}!=\prod_{i=1}^{N} \frac{1-\mathrm{Q}^{i}}{1-\mathrm{Q}}=1(1+\mathrm{Q})\left(1+\mathrm{Q}+\mathrm{Q}^{2}\right) \cdots\left(1+\mathrm{Q}+\ldots+\mathrm{Q}^{N-1}\right)}
\end{gathered}
$$

$\left(1+\mathrm{Q}+\ldots+\mathrm{Q}^{N-1}\right)=\mathrm{Q}$-deformation of the integer N
algebraic area \Leftrightarrow non commuting space $\Leftrightarrow \mathrm{Q}$-deformation
we are looking at a Trace identity which would be analogous to

$$
Z_{N}\left(\mathrm{Q}=e^{i \gamma}\right)=\text { Trace } H_{\gamma}^{N}
$$

\Rightarrow we still need "closed" walks after $N=M+L_{1}+L_{2}$ steps
\Rightarrow starting point and ending point on the same horizontal axis : $L_{1}=L_{2}$
$N=M+L_{1}+L_{2} \Rightarrow L_{1}=L_{2}=(N-M) / 2$
N steps $=M$ steps right $\oplus(N-M) / 2$ steps up $\oplus(N-M) / 2$ steps down still one has to identify the starting point and the ending point : boundary conditions (see later)
on which quantum model are mapped these biased "closed" random walks? one way : look again at $\mathrm{Q}=1 \Leftrightarrow$ random walks counting
$Z_{M, L_{1}, L_{2}}(\mathrm{Q}=1)=\frac{\left(M+L_{1}+L_{2}\right)!}{M!L_{1}!L_{2}!}$
total number of N-steps biased eandom walks :

$$
\sum_{M=0}^{N} Z_{M, \frac{N-M}{2}, \frac{N-M}{2}}(\mathrm{Q}=1)=\sum_{M=0}^{N} \frac{N!}{M!\left(\frac{N-M}{2}\right)!^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pm 1+2 \cos k_{y}\right)^{N} d k_{y}
$$

\rightarrow spectrum

$$
\pm 1+2 \cos k_{y}
$$

corresponds to quantum Hamiltonian with only right hoppings on the horizontal axis

$$
H_{0}=T_{x}+T_{y}+T_{y}^{-1}
$$

eigenstates

$$
e^{i k_{x} x} e^{i k_{y} y}
$$

eigenenergies

$$
e^{i k_{x}}+e^{i k_{y}}+e^{-i k_{y}}=e^{i k_{x}}+2 \cos k_{y}
$$

if one restricts Hilbert space to real spectrum then $k_{x}=0, \pm \pi$

$$
\pm 1+2 \cos k_{y}
$$

$$
k_{x}=\text { boundary conditions } \quad k_{y}=\text { quantum number }
$$

take now $\mathrm{Q} \neq 1 \Leftrightarrow \gamma \neq 0$
\rightarrow mapping on non Hermitian "Hofstadter" model

$$
\begin{gathered}
H_{\gamma}=T_{x}+T_{y}+T_{y}^{-1} \\
T_{x} T_{y}=e^{-i \gamma} T_{y} T_{x}
\end{gathered}
$$

\rightarrow Trace identity?

$$
" \sum_{M} " Z_{M, \frac{N-M}{2}, \frac{N-M}{2}}\left(\mathrm{Q}=e^{i \gamma}\right)=\text { Trace } H_{\gamma}^{N}
$$

on the quantum mechanics side :
non Hermitian Hamiltonian is solvable
\rightarrow spectrum is known in the commensurate case $\gamma=2 \pi \frac{p}{q}$
in fact $\gamma=\frac{2 \pi}{q}$ (spectrum does not depend on p)
for a given q : eigenstates $E_{q}(r)$

$$
E_{q}(r)=2 \cos \left[\frac{\arccos \left[e^{i q k_{x}} / 2+\cos \left(q k_{y}\right)\right]}{q}+2 \pi \frac{1}{q} r\right] \quad r=1,2, \ldots, q
$$

complex eigenenergies for certain k_{y} (non Hermitian)

Trace is

$$
\text { Trace } H_{\gamma=2 \pi / q}^{N} \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi} d k_{y} \frac{1}{q} \sum_{r=1}^{q} E_{q}(r)^{N}
$$

Trace identity :

use quantum lattice is q-periodic on the x-axis (up to phase $e^{i q k_{x}}$)
$\rightarrow q$-periodic sum over M :
one verifies (Mathematica) S. Matveenko, S.O. (2013)

$$
\sum_{M=0, q, 2 q, \ldots}^{N} Z_{M, \frac{N-M}{2}, \frac{N-M}{2}}\left(\mathrm{Q}=e^{i 2 \pi / q}\right) e^{i M k_{x}}=\text { Trace } H_{\gamma=2 \pi / q}^{N}
$$

what have we learned from quantum mechanics :
i) " q-periodic" walks $M=0, q, 2 q, \ldots=$ multiple of q
ii) generating function evaluated at roots of unity $\mathrm{Q}=e^{i 2 \pi / q}$
we notice that in the Trace identity each term

$$
Z_{M, \frac{N-M}{2}, \frac{N-M}{2}}\left(\mathrm{Q}=e^{i 2 \pi / q}\right)
$$

with $M=0, q, 2 q, \ldots$ is an integer
why integers show up and what is their combinatorial meaning (if any)?
S. Mashkevich, S.O., A. Polychronakos (2014)
why integers?
due to well-known Q-binomial identity : when M multiple of q

$$
\binom{M+L}{M}_{\mathrm{Q}=\mathrm{e}^{\frac{2 \mathrm{i} \pi p}{q}}}=\binom{\left[\frac{M+L}{q}\right]}{\frac{M}{q}}=\text { an integer }
$$

\Rightarrow when $\mathrm{Q}=\mathrm{e}^{\frac{2 i \pi}{q}}$ the $\left(M, L_{1}, L_{2}\right)$ walks algebraic area generating function
$Z_{M, L_{1}, L_{2}}(\mathrm{Q})=\sum_{k=0}^{\min \left(L_{1}, L_{2}\right)}\left[\binom{M+L_{1}+L_{2}}{k}-\binom{M+L_{1}+L_{2}}{k-1}\right]\binom{M+L_{1}-k}{M}_{\mathrm{Q}^{-1}}\binom{M+L_{2}-k}{M}_{\mathrm{Q}}$
$=$ an integer when M multiple of q
M multiple of $q \Rightarrow$ simplify further by taking also $L_{1}-L_{2}$ multiple of q in particular when $q=2 \rightarrow \mathrm{Q}=-1$

$$
Z_{M, L_{1}, L_{2}}(\mathrm{Q}=-1)=\binom{L_{1}+L_{2}}{L_{1}}\binom{\frac{M+L_{1}+L_{2}}{2}}{\frac{L_{1}+L_{2}}{2}}
$$

even more generally for unbiaised $\left(M_{1}, M_{2}, L_{1}, L_{2}\right)$ walks
take both $M_{1}-M_{2}$ and $L_{1}-L_{2}$ multiple of q
again when $q=2 \rightarrow \mathrm{Q}=-1$

$$
Z_{M_{1}, M_{2}, L_{1}, L_{2}}(\mathrm{Q}=-1)=\binom{L_{1}+L_{2}}{L_{1}}\binom{M_{1}+M_{2}}{M_{1}}\binom{\frac{M_{1}+M_{2}+L_{1}+L_{2}}{2}}{\frac{L_{1}+L_{2}}{2}}
$$

simple expressions : combinatorial meaning ?
$q=2 \rightarrow \mathrm{Q}=-1$ is well-known in combinatorics
as the $\mathrm{Q}=-1$ Stembridge phenomenon
particular case of the more general $\mathrm{Q}=$ root of unity Sieving phenomenon

Sieving paramount example :
i) collection of the L-subsets of the $(M+L)$-set $=\{1,2, \ldots, M+L\}$
ii) generating function $\binom{M+L}{L}_{\mathrm{Q}}=\mathrm{Q}$-binomial
iii) $c=$ cycling generator acting by cycling $1 \rightarrow 2,2 \rightarrow 3, \ldots, M+L \rightarrow 1$

Sieving: $\binom{M+L}{L}_{\mathrm{Q}}$ evaluated at $\mathrm{Q}=\exp (2 i \pi p /(M+L))$ counts the number of the L-subsets which are fixed by c^{p}
example : $M=2, L=2$ one has $\binom{2+2}{2}_{\mathrm{Q}}=1+\mathrm{Q}+2 \mathrm{Q}^{2}+\mathrm{Q}^{3}+\mathrm{Q}^{4}$
$p=2 \rightarrow \mathrm{Q}=\exp (2 i \pi 2 /(2+2))=-1 \leftrightarrow$ Stembridge
$1+\mathrm{Q}+2 \mathrm{Q}^{2}+\mathrm{Q}^{3}+\mathrm{Q}^{4}=2$
2 is the number of the 2 -subsets of $\{1,2,3,4\}$ fixed by $c^{2}:\{1,3\} \leftrightarrow\{2,4\}$ $p=1,3 \Rightarrow 1+\mathrm{Q}+2 \mathrm{Q}^{2}+\mathrm{Q}^{3}+\mathrm{Q}^{4}=0 \Rightarrow$ no 2 -subset fixed by c or c^{3} $p=4 \rightarrow \mathrm{Q}=1 \Rightarrow=6 \Rightarrow$ all 2-subsets fixed by $c^{4}=1$ (trivial)
one to one mapping
the collection of the L-subsets of the $(M+L)$-set
the collection of (M, L) random walks $=M$-steps right $\oplus L$-steps up for example :
$\{1,3\}$ subset of $\{1,2,3,4\} \leftrightarrow$ Right-Up-Right-Up $(M=2, L=2)$ walk and not surprisingly the algebraic area generating function for (M, L) walks

$$
Z_{M, L_{1}=L, L_{2}=0}(\mathrm{Q})=\binom{M+L}{L}_{\mathrm{Q}}
$$

indeed reduces to the Q-binomial Sieving generating function
\rightarrow Sieving interpretation of

$$
Z_{M_{1}, M_{2}, L_{1}, L_{2}}(\mathrm{Q}=-1)=\binom{L_{1}+L_{2}}{L_{1}}\binom{M_{1}+M_{2}}{M_{1}}\binom{\frac{M_{1}+M_{2}+L_{1}+L_{2}}{2}}{\frac{L_{1}+L_{2}}{2}}
$$

in terms of subsets of sets
a daunting question: $Z_{M_{1}, M_{2}, L_{1}, L_{2}}(\mathrm{Q})$ seems out of reach
still when taking both $M_{1}-M_{2}$ and $L_{1}-L_{2}$ multiple of q what could be the generalization of the above formula to

$$
Z_{M_{1}, M_{2}, L_{1}, L_{2}}\left(\mathrm{Q}=\mathrm{e}^{\frac{2 i \pi}{q}}\right)
$$

\rightarrow sum rule for the Hofstadter spectrum : $Z_{N}\left(\mathrm{Q}=e^{2 i \pi / q}\right)=$ Trace $H_{\gamma=2 \pi / q}^{N}$

$$
Z_{N}(\mathrm{Q})=\sum_{M=0}^{N / 2} Z_{M, M, N / 2-M, N / 2-M}(\mathrm{Q})
$$

Bonne continuation Alain

> et merci pour tout!

