Biaised and unbiased two-dimensional random walks and the Hofstadter model

LPTMS ORSAY CNRS/Université Paris-Sud

with S.Mashkevich Bogolyubov Inst, S.Matveenko Landau Inst, A.Polychronakos CUNY NY

some results for the algebraic area of biased random walks

their relation to "Hofstadter" quantum mechanics

 \rightarrow Trace identities

 \rightarrow Combinatorics

algebraic area of a closed random walk on a square lattice

defined in terms of its *n*-Winding Sectors

= points enclosed *n* times by the walk

 $S_n \equiv$ area of the *n*-winding sectors inside the walk

$$\Rightarrow$$
 algebraic area $A = \sum_{n=-\infty}^{\infty} nS_n$

in the example above :

$$A = -1 \times 1 + -1 \times 1 + 0 \times 1 + 1 \times 21 + 2 \times 2 = 23$$

question :

consider all closed random walks starting from and returning to a given point after *N* steps

$$\langle A \rangle = \sum_{n=-\infty}^{\infty} n \langle S_n \rangle = 0$$
 obvious

what is the algebraic area probability distribution $P_N(A)$?

a difficult problem

in the continuous limit $N \to \infty$, lattice spacing $a \to 0 \Rightarrow$ Brownian curves "time" $t = Na^2$

 $P_N(A) \rightarrow P_t(A)$ is known (easy) = Levy's law

mapping on a quantum particle in a $\perp B$ field

 $\Rightarrow P_t(A) =$ Fourier transform of Landau partition function $Z_{\text{Landau}}(B)$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} dB \; \frac{Z_{\text{Landau}}(B)}{Z_{\text{Landau}}(0)} \; e^{-iBA} = P_t(A)$$

$$\int_{-\infty}^{+\infty} dA \ P_t(A) \ e^{iBA} = \frac{Z_{\text{Landau}}(B)}{Z_{\text{Landau}}(0)}$$

for the case of discrete random walks on a lattice :

mapping on a quantum particle on a lattice in a $\perp B$ field

 \equiv Hofstadter Hamiltonian

$$H_{\gamma} = T_x + T_x^{-1} + T_y + T_y^{-1}$$

 $\gamma \equiv 2\pi \Phi / \Phi_0$ flux per unit cell

$$T_x = e^{i(p_x - eA_x)/\hbar} \qquad T_y = e^{i(p_y - eA_y)/\hbar}$$
$$T_x T_y = e^{-i\gamma} T_y T_x$$

define $C_N(A) \equiv$ number of closed random walks of N steps with area $A \Rightarrow P_N(A) = \frac{C_N(A)}{\sum_A C_N(A)}$

continuous
$$\int_{-\infty}^{+\infty} dA \ P_t(A) \ e^{iBA} = \frac{Z_{\text{Landau}}(B)}{Z_{\text{Landau}}(0)} \rightarrow \text{discrete} \ \sum_{A=-\infty}^{A=\infty} C_N(A) \ e^{i\gamma A} = \text{Trace} \ H_{\gamma}^N$$

replace $e^{i\gamma} \rightarrow Q$

 $\sum_{A=-\infty}^{A=\infty} C_N(A) \ e^{i\gamma A} \to \sum_A C_N(A) Q^A \equiv Z_N(Q) = \text{generating function for the } C_N(A) \text{'s}$

$$Z_N(\mathbf{Q}=e^{i\gamma})=\text{Trace }H_{\gamma}^N$$

Trace identity (Bellissard (1997))

little is known exactly on the $C_N(A)$'s or on Trace H_{γ}^N a trivial case : $\gamma = 0 \Leftrightarrow Q = 1 \rightarrow Z_N(Q) = \sum_A C_N(A)Q^A|_{Q=1} = \sum_A C_N(A)$ $\Leftrightarrow N$ -steps closed random walks counting :

N steps = *M* steps right/left $\oplus (N - 2M)/2$ steps up/down

$$Z_N(Q=1) = \sum_{M=0}^{N/2} \frac{N!}{M!^2(\frac{N-2M}{2})!^2} = (\frac{1}{2\pi})^2 \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} (2\cos k_x + 2\cos k_y)^N dk_x dk_y$$

 $2\cos k_x + 2\cos k_y$ is the spectrum of the Hofstadter Hamiltonian when $\gamma = 0$ $H_0 = T_x + T_x^{-1} + T_y + T_y^{-1}$ $T_x = e^{ip_x/\hbar}$ $T_y = e^{ip_y/\hbar}$

Bloch eigenstates : $e^{ik_xx}e^{ik_yy}$ $k_x, k_y \in [-\pi, \pi]$ eigenenergies : $e^{ik_x} + e^{-ik_x} + e^{ik_y} + e^{-ik_y} = 2\cos k_x + 2\cos k_y$ $\rightarrow Z_N(Q = 1) = \text{Trace}H_0^N$

a solvable case:

random walks biased to go only to the right

M steps right $\oplus L_1$ steps up $\oplus L_2$ steps down

one knows the generating function $Z_{M,L_1,L_2}(Q)$ for the $C_{M,L_1,L_2}(A)$'s

S. Mashkevich, S.O. (2009)

$$Z_{M,L_1,L_2}(\mathbf{Q}) = \sum_{k=0}^{\min(L_1,L_2)} \left[\binom{M+L_1+L_2}{k} - \binom{M+L_1+L_2}{k-1} \right] \binom{M+L_1-k}{M}_{\mathbf{Q}^{-1}} \binom{M+L_2-k}{M}_{\mathbf{Q}}$$

involves Q-binomial, Q-factorials

$$\binom{N}{M}_{Q} \equiv \frac{[N]_{Q}!}{[M]_{Q}![N-M]_{Q}!}$$

$$[N]_{Q}! = \prod_{i=1}^{N} \frac{1 - Q^{i}}{1 - Q} = 1(1 + Q)(1 + Q + Q^{2}) \cdots (1 + Q + \ldots + Q^{N-1})$$

 $(1 + Q + \ldots + Q^{N-1}) = Q$ -deformation of the integer N

algebraic area \Leftrightarrow non commuting space \Leftrightarrow Q-deformation

we are looking at a Trace identity which would be analogous to

$$Z_N(\mathbf{Q}=e^{i\gamma})=\mathrm{Trace}\ H_{\gamma}^N$$

 \Rightarrow we still need "closed" walks after $N = M + L_1 + L_2$ steps

⇒ starting point and ending point on the same horizontal axis : $L_1 = L_2$ $N = M + L_1 + L_2 \Rightarrow L_1 = L_2 = (N - M)/2$ N steps = M steps right $\oplus (N - M)/2$ steps up $\oplus (N - M)/2$ steps down

still one has to identify the starting point and the ending point :

boundary conditions (see later)

on which quantum model are mapped these biased "closed" random walks? one way : look again at $Q = 1 \Leftrightarrow$ random walks counting $Z_{M,L_1,L_2}(Q = 1) = \frac{(M+L_1+L_2)!}{M!L_1!L_2!}$

total number of N-steps biased eandom walks :

$$\sum_{M=0}^{N} Z_{M,\frac{N-M}{2},\frac{N-M}{2}} (Q=1) = \sum_{M=0}^{N} \frac{N!}{M! (\frac{N-M}{2})!^2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\pm 1 + 2\cos k_y)^N dk_y$$

 \rightarrow spectrum

$$\pm 1 + 2\cos k_y$$

corresponds to quantum Hamiltonian with only right hoppings on the horizontal axis

$$H_0 = T_x + T_y + T_y^{-1}$$

eigenstates

 $e^{ik_xx}e^{ik_yy}$

eigenenergies

$$e^{ik_x} + e^{ik_y} + e^{-ik_y} = e^{ik_x} + 2\cos k_y$$

if one restricts Hilbert space to real spectrum then $k_x = 0, \pm \pi$

$$\pm 1 + 2\cos k_{\rm y}$$

 k_x = boundary conditions k_y = quantum number

take now $Q \neq 1 \Leftrightarrow \gamma \neq 0$

 \rightarrow mapping on non Hermitian "Hofstadter" model $H_{\gamma} = T_x + T_y + T_y^{-1}$ $T_x T_y = e^{-i\gamma} T_y T_x$

 \rightarrow Trace identity ?

"
$$\sum_{M}$$
" $Z_{M,\frac{N-M}{2},\frac{N-M}{2}}$ (Q = $e^{i\gamma}$) = Trace H^{N}_{γ}

on the quantum mechanics side :

non Hermitian Hamiltonian is solvable

 \rightarrow spectrum is known in the commensurate case $\gamma = 2\pi \frac{p}{q}$ in fact $\gamma = \frac{2\pi}{q}$ (spectrum does not depend on *p*) for a given *q* : eigenstates $E_q(r)$

$$E_q(r) = 2\cos\left[\frac{\arccos[e^{iqk_x}/2 + \cos(qk_y)]}{q} + 2\pi\frac{1}{q}r\right] \qquad r = 1, 2, \dots, q$$

complex eigenenergies for certain k_y (non Hermitian)

Trace is

Trace
$$H_{\gamma=2\pi/q}^N \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} dk_y \frac{1}{q} \sum_{r=1}^{q} E_q(r)^N$$

Trace identity :

use quantum lattice is *q*-periodic on the *x*-axis (up to phase e^{iqk_x}) $\rightarrow q$ -periodic sum over *M* :

one verifies (Mathematica) S. Matveenko, S.O. (2013)

$$\sum_{M=0,q,2q,...}^{N} Z_{M,\frac{N-M}{2},\frac{N-M}{2}} (Q = e^{i2\pi/q}) e^{iMk_x} = \text{Trace } H^N_{\gamma=2\pi/q}$$

what have we learned from quantum mechanics :

i) "q-periodic" walks M = 0, q, 2q, ... = multiple of qii) generating function evaluated at roots of unity $Q = e^{i2\pi/q}$ we notice that in the Trace identity each term $Z_{M, \frac{N-M}{2}, \frac{N-M}{2}} (Q = e^{i2\pi/q})$

with $M = 0, q, 2q, \dots$ is an integer

why integers show up and what is their combinatorial meaning (if any)?

S. Mashkevich, S.O., A. Polychronakos (2014)

why integers ?

due to well-known Q-binomial identity : when M multiple of q

$$\binom{M+L}{M}_{Q=e^{\frac{2i\pi p}{q}}} = \binom{\left\lfloor \frac{M+L}{q} \right\rfloor}{\frac{M}{q}} = \text{an integer}$$

 \Rightarrow when $\mathbf{Q} = \mathbf{e}^{\frac{2i\pi}{q}}$ the (M, L_1, L_2) walks algebraic area generating function

$$Z_{M,L_1,L_2}(\mathbf{Q}) = \sum_{k=0}^{\min(L_1,L_2)} \left[\binom{M+L_1+L_2}{k} - \binom{M+L_1+L_2}{k-1} \right] \binom{M+L_1-k}{M}_{\mathbf{Q}^{-1}} \binom{M+L_2-k}{M}_{\mathbf{Q}}$$

= an integer when *M* multiple of *q*

M multiple of $q \Rightarrow$ simplify further by taking also $L_1 - L_2$ multiple of qin particular when $q = 2 \rightarrow Q = -1$

$$Z_{M,L_1,L_2}(Q = -1) = \binom{L_1 + L_2}{L_1} \binom{\frac{M + L_1 + L_2}{2}}{\frac{L_1 + L_2}{2}}$$

even more generally for unbiaised (M_1, M_2, L_1, L_2) walks take both $M_1 - M_2$ and $L_1 - L_2$ multiple of qagain when $q = 2 \rightarrow Q = -1$

$$Z_{M_1,M_2,L_1,L_2}(Q = -1) = \binom{L_1 + L_2}{L_1} \binom{M_1 + M_2}{M_1} \binom{\frac{M_1 + M_2 + L_1 + L_2}{2}}{\frac{L_1 + L_2}{2}}$$

simple expressions : combinatorial meaning?

 $q = 2 \rightarrow Q = -1$ is well-known in combinatorics

as the Q = -1 Stembridge phenomenon

particular case of the more general Q = root of unity Sieving phenomenon

Sieving paramount example :

- i) collection of the *L*-subsets of the (M+L)-set = $\{1, 2, \dots, M+L\}$
- ii) generating function $\binom{M+L}{L}_Q = Q$ -binomial

iii) c = cycling generator acting by cycling $1 \rightarrow 2, 2 \rightarrow 3, \dots, M + L \rightarrow 1$ Sieving : $\binom{M+L}{L}_Q$ evaluated at $Q = exp(2i\pi p/(M+L))$ counts the number of the *L*-subsets which are fixed by c^p

example : M = 2, L = 2 one has $\binom{2+2}{2}_Q = 1 + Q + 2Q^2 + Q^3 + Q^4$ $p = 2 \rightarrow Q = \exp(2i\pi 2/(2+2)) = -1 \leftrightarrow \text{Stembridge}$ $1 + Q + 2Q^2 + Q^3 + Q^4 = 2$

2 is the number of the 2-subsets of $\{1, 2, 3, 4\}$ fixed by $c^2 : \{1, 3\} \leftrightarrow \{2, 4\}$ $p = 1, 3 \Rightarrow 1 + Q + 2Q^2 + Q^3 + Q^4 = 0 \Rightarrow$ no 2-subset fixed by c or c^3 $p = 4 \rightarrow Q = 1 \Rightarrow = 6 \Rightarrow$ all 2-subsets fixed by $c^4 = 1$ (trivial) one to one mapping

the collection of the *L*-subsets of the (M+L)-set

\leftrightarrow

the collection of (M, L) random walks = *M*-steps right \oplus *L*-steps up for example :

{1,3} subset of {1,2,3,4} \leftrightarrow Right-Up-Right-Up (M = 2, L = 2) walk and not surprisingly the algebraic area generating function for (M, L) walks

$$Z_{M,L_1=L,L_2=0}(\mathbf{Q}) = \binom{M+L}{L}_{\mathbf{Q}}$$

indeed reduces to the Q-binomial Sieving generating function

 \rightarrow Sieving interpretation of

$$Z_{M_1,M_2,L_1,L_2}(Q = -1) = \binom{L_1 + L_2}{L_1} \binom{M_1 + M_2}{M_1} \binom{\frac{M_1 + M_2 + L_1 + L_2}{2}}{\frac{L_1 + L_2}{2}}$$

in terms of subsets of sets

a daunting question : $Z_{M_1,M_2,L_1,L_2}(Q)$ seems out of reach still when taking both $M_1 - M_2$ and $L_1 - L_2$ multiple of q what could be the generalization of the above formula to

$$Z_{M_1,M_2,L_1,L_2}(\mathbf{Q}=\mathbf{e}^{\frac{2\mathrm{i}\pi}{q}})$$

 \rightarrow sum rule for the Hofstadter spectrum : $Z_N(Q = e^{2i\pi/q}) =$ Trace $H^N_{\gamma=2\pi/q}$

$$Z_N(Q) = \sum_{M=0}^{N/2} Z_{M,M,N/2-M,N/2-M}(Q)$$

Bonne continuation Alain

et merci pour tout !

