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Entanglement Entropy (Generalities)
Entanglement

Entanglement: a complex and delicate quantum phenomenon (since
1930�Einstein et al, Schrodinger), in particular a widely believed resource
of quantum informatics (since 1980�Feynman).

Consider a bipartite quantum system consisting of two parts A(lice) and
B(ob), thus with the state space

HA+B = HA 
HB .

Pure state Ψ 2 HA+B is entangled if it is not separable

Ψ = ΨA 
ΨB , ΨA,B 2 HA,B .

Example: Bell states. A and B are qubits, i.e., dimHA,B = 2,
(j1iA , j2iA) and (j1iB , j2iB ) are orthonormal bases and

Ψ = 2�1/2 (j1iA 
 j2iB � j2iA 
 j1iB )
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Entanglement Entropy (Generalities)
Entanglement Entropy

Entropy (i) classical physics: a measure of the lack of knowledge (e.g., on
microstates corresponding a given macrostate), hence related to classical
probability or randomness
(ii) quantum physics: a measure of quantum correlations due to the
"randomness" of quantum mechanics. One uses the von Neumann
entropy of a state ρ

S(ρ) = �Trρ log2 ρ.

Renyi entropy: Rα(ρ) = �(α� 1)�1 log2 Trρα and limα!1 Ra(ρ) = S(ρ)
("replica" version)

An important property: if dimH =n, then

max
ρ
S(ρ) = log2 n

(as for classical entropy).
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Entanglement Entropy (Generalities)
Reduced Density Matrix

If ρ is a density matrix of a bipartite system A+ B, then (Dirac)

ρA = TrBρ

is the reduced density matrix of A.
Entanglement entropy of A:

S(ρA) = TrA ρA log2 ρA.

Example: If Ψ is the Bell state, then S(jΨi hΨj) = 0 (valid for any pure
state). However,

ρA = 2
�1(j1iA h1jA + j2iA h2jA)

and S(ρA) = log2 2 = 1, i.e., is maximal possible, i.e., S(ρA) is an
entanglement quanti�er.
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Extended Systems
Area Law

Let A+ B be a macroscopic bipatite system in the d-dimensional volume
Ω of linear size L, A be its part in the d-dimensional volume Λ of linear
size l , and B = Ω nΛ (environment). One is interested in the asymptotics
of S(ρΛ) for 1 << l << L.

Recall the large distance behavior of binary (ternary, etc.), just take
A = fx , yg and let l = jx � y j ! ∞. Important in the analysis of pt �s.
Di¤erence: SΛ is highly non-local, hence the qpt order parameter?.

According to Bekenstein, 1973, Hawking, 1974 (black holes physics);
Bombelliet al., 1986, Srednicki, 1993 (QFT), Callan-Wilczek, 1994 (CFT);
Calabrese-Cardy, 2005th (CFT, Quantum Spin Chains)

S(ρΛ) '
�
no qpt, ld�1, area law ,
qpt, ld�1 log l , violation of area law .

Recently: The area law is valid "generically" for locally interacting
quantum systems having a gap in their spectrum (Hastings 2010th).
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Extended Systems
Quasifree Fermions

The violation of the area law:
(i) d = 1: explicitly solvable models, e.g., 1d quantum spin chains.
(ii) d > 1: mostly conjectured, established only for toy model of quasi-free
translation invariant fermions, i.e., quadratic Hamiltonians

bH = ∑
j ,k2Ω

Djkc
+
j ck +

1
2 ∑
j ,k2Ω

Ojkc
+
j c

+
k +

1
2 ∑
j ,k2Ω

Okjcjck

where D = D�, OT = �O, O = fO jkgnj ,k=1.
Consider (for simplicity) the "diagonal" case O = 0. Denote

K = f< cjc+k >gj ,k2Ω, K
0 = K jT=0 , KΛ = K

(0) jΛ
Then

S(ρΛ) = �Tr ρΛ log2ρΛ = tr h(KΛ),

h(x) = �x log2 x � (1� x) log2(1� x), 0 � x � 1,
where Tr and tr denote the trace in the 2jΩj - and jΩj-dimensional spaces.
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Extended Systems
Quasifree Fermions: Tranlation Invariant Case

Nice formulas but not too simple to use even in the translation invariant
case.

For the quadratic Hamiltonian with �nite range and translation invariant
D the large-l scaling of the entanglement entropy for any d � 1 (both
critical ld�1 log l and non critical ld�1) was established
(i) via upper and lower bounds,
(ii) via certain conjectures on the subleading term in the Szego theorem
for Toeplitz determinants (Gioev-Klich 06, Wolf 08)
(iii) rigorously, by using a rather sophisticated techniques of modern
operator theory and harmonic analysis (Sobolev et al 14).

It turns out that the disordered case is in a way simpler (modulo basic
results of localization theory)
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Extended Systems
Quasifree Fermions: Disordered Case

Choose D = (H � EF )/T , where H is the Hamiltonian of the
d-dimensional Anderson model with random i.i.d. potential V = fVjgj2Ω)
and EF is the Fermi energy lying in the bulk of spectrum of H. Then

K 0 = K jT=0 = θ(EF �H),

where θ is the Heaviside function.

Thus, K 0 is the orthogonal projection on the ground state of the whole
system (the Slater determinant on the �rst n eigenstates of bH, where
n/jΩj = N(EF ) and N(EF ) is the Integrated Density of States of) H and
the entropy of the whole system is zero.
Start from the bounds (simple calculus or simple Maple)

ϕ(x) � h(x) � (ϕ(x))a, ϕ(x) = 4x(1� x), 0 � a � ln 2.
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Bounds for Entanglement Entropy
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Extended Systems
Quasifree Fermions

If K 0 = fPjkgj ,k2Zd , then KΛ = fPjkgj ,k2Λ and for a = 1/2 in the upper
bound

LΛ � SΛ � UΛ, LΛ = 4 trΓΛ, UΛ = 2 tr
p

ΓΛ, ΓΛ = KΛ(1Λ �KΛ).

Denote Λ the exterior of Λ and use the equality ∑k2Zd jPjk j2 = Pjj :

(ΓΛ)jk = ∑
t2Λ

PjtPtk , j , k 2 Λ.

The large-Λ behavior of ΓΛ is determined by the large jj � k j decay of Pjk .
ΓΛ can be expressed via the current-current correlator determining the a.c.
conductivity. It is also closely related to the number
statistics in Λ.
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Extended Systems
Quasifree Fermions: Translation Invariant Case

In the 1d translation invariant case

Pjk =
sin pF jtj
jtj ,

SΛ & 8
∞

∑
t=1
tΠt , Πj�k = jPjk j2

and we have
SΛ & (4/π2) log l , l >> 1,

i.e., the violation of the area law (in the 1d case the boundedness of SΛ).
Likewise, for d � 1:

SΛ & ld�1 log l , l >> 1.
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Mean Entanglement Entropy
Lower Bound

A fundamental result on the Anderson localization is the bound

hjPjk ji � Ce�γjjj�k j

valid for a translation invariant in mean and short correlated random
potentials and
(i) 1d case: all energies and and strengths of disorder;
(ii) d � 2 case : neighborhoods of band edges (any disorder) and for all
energies if the disorder is large enough.
Since jPjk j � 1, we have for Πj�k =



jPjk j2

�
� Ce�γjj�k j and the above

lower bound implies

hSΛi & c�ld�1, l >> 1!

This suggests the validity of the area law scaling for the mean entropy and
any d if EF is in the localized spectrum.
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Mean Entanglement Entropy
Upper Bound

It follows from the above that

hSΛi � hUΛi , UΛ = 2 tr
p

ΓΛ, ΓΛ = KΛ(1Λ �KΛ).

Use the Peierls inequality: for any convex f (f 00 � 0) and hermitian M

tr f (M) � ∑
j
f (Mjj )

with f (x) = 2
p
x and M = ΓΛ and some calculus to obtain

hUΛi . 4(2d � 1)ld�1
∞

∑
j=0

 
∞

∑
k=1

Πk+j

!1/2

,

and
c�ld�1 � hSΛi � c+ld�1, 0 � c� � c+ < ∞.

We have the area law scaling for the mean entanglement entropy and
d � 1 if the fermi energy is in the localized spectrum.
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Entanglement Entropy of Typical Realizations (1d case)
Analytical Results

Write Λ = [�m,m], l = 2m+ 1 and obtain Lm � Sm � Um , where for
m >> 1

Lm ' L+0 (TmV ) + L�0 (T�mV ),
the shift operator T act on V = fVjg∞

j=�∞ as (TV )j = Vj+1 and, e.g.,

L+0 = 4
0

∑
j=�∞

∞

∑
k=1

jPjk j2

The double sum is not zero and �nite for all typical realizations (with
probability 1) again because of the exponential localization bound.

Likewise
Um ' U+0 (TmV ) + U�0 (T�mV ).
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Bounds for the Entropy of Typical Realizations (1d case)
Histograms
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Bounds for the Entropy of Typical Realizations (1d case)
Conclusions

Histograms overlap, hence the entanglement entropy depends
nontrivially on the realizations of disorder, i.e., is not selfaveraging for
m >> 1. Indeed, if the entropy were nonrandom, then the whole
probability distribution of the upper bound has to lie on the right of
that of lower bound.

Histograms are independent of l = 2m+ 1 & 15000. Indeed, if the
random potential is short correlated, the terms of the both bounds
are statistically independent for m >> 1, and since the potential is
translation and re�ection symmetric in the mean, the probability
distributions of these terms are identical. Hence, for m >> 1 the
probability distribution of the r.h.s. of both bounds are the
convolutions of those of L�0 and U�0 . This is also con�rmed by our
numerics.
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Convolutions: Lower Bound
Histograms
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Convolutions: Upper Bound
Histograms
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More Conclusions

Entropy is bounded with probability 1, i.e., satis�es the stochastic
area law, if its distribution is concentrated on a �nite interval.
Otherwise, the entropy has to have "peaks" sn ! ∞, n! ∞, where
sn solves p(sn) ' n�(1+δ), δ > 0 with p(s) the large-s tail of the
entropy probability distribution. In particular, if p(s) ' e�s/s0 , then
sn ' s0(1+ δ) log n, corresponding to the critical scaling of the
entropy. Note, however, that sn�s are just extremal and rather rare
peaks of randomly �uctuating entropy but not its "regular"
asymptotics.
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Emergence of the Area Law
Weak Disorder
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Emergence of the Area Law
Stronger Disorder
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