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Entanglement Entropy (Generalities)

Entanglement

Entanglement: a complex and delicate quantum phenomenon (since
1930’ Einstein et al, Schrodinger), in particular a widely believed resource
of quantum informatics (since 1980" Feynman).

Consider a bipartite quantum system consisting of two parts A(lice) and
B(ob), thus with the state space

HA+B — HA ® HB-
Pure state ¥ € H 4. is entangled if it is not separable
Y=Y4®¥Ys, Yas < HA,B-

Example: Bell states. A and B are qubits, i.e., dmHs g = 2,
(11)4.12)4) and (|1)5,|2)g) are orthonormal bases and

Y=2"12(11),®@[2)g £[2)4, ® 1))
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Entanglement Entropy (Generalities)

Entanglement Entropy

Entropy (i) classical physics: a measure of the lack of knowledge (e.g., on
microstates corresponding a given macrostate), hence related to classical
probability or randomness

(ii) quantum physics: a measure of quantum correlations due to the
"randomness" of quantum mechanics. One uses the von Neumann
entropy of a state p

S(p) = —Trplogy p.

Renyi entropy: Ry(p) = —(a — 1)1 log, Trp® and lim,—1 R,(0) = S(p)
("replica" version)

An important property: if dim’H =n, then

max S(p) = logy n
P

(as for classical entropy).
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Entanglement Entropy (Generalities)

Reduced Density Matrix

If p is a density matrix of a bipartite system A+ B, then (Dirac)

Pa = Trep

is the reduced density matrix of A.
Entanglement entropy of A:

S(pa) =Tra pylogy py-

Example: If ¥ is the Bell state, then S(|¥) (¥|) = 0 (valid for any pure
state). However,

Pa = 271(’1>A (La+12)4(2]4)

and S(p,) = log, 2 =1, i.e., is maximal possible, i.e., S(p,) is an
entanglement quantifier.
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Extended Systems

Area Law

Let A+ B be a macroscopic bipatite system in the d-dimensional volume
Q) of linear size L, A be its part in the d-dimensional volume A of linear
size /, and B = Q \ A (environment). One is interested in the asymptotics
of S(p,) for 1 <</ << L.

Recall the large distance behavior of binary (ternary, etc.), just take
A= {x,y} and let | = |[x — y| — oo. Important in the analysis of pt 's.
Difference: Sp is highly non-local, hence the qpt order parameter?.
According to Bekenstein, 1973, Hawking, 1974 (black holes physics);

Bombelliet al., 1986, Srednicki, 1993 (QFT), Callan-Wilczek, 1994 (CFT);
Calabrese-Cardy, 2005th (CFT, Quantum Spin Chains)

no gpt, area law,
S(pa) ={ "0

/dfll
gpt, jq-1 log !, violation of area law.

Recently: The area law is valid "generically" for locally interacting
quantum systems having a gap in their spectrum (Hastings 2010th).
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Extended Systems

Quasifree Fermions

The violation of the area law:
(i) d = 1: explicitly solvable models, e.g., 1d quantum spin chains.

(i) d > 1: mostly conjectured, established only for toy model of quasi-free
translation invariant fermions, i.e., quadratic Hamiltonians

Z DJkC Ck+ Z OJkC ¢ "’ Z Oyjcick
JkeQ jkGQ jkGQ

where D = D*, 0T = -0, 0= {0y} ,_;.
Consider (for simplicity) the "diagonal" case O = 0. Denote

K={< e >}jikea K°=K|r=, Kn = KO |5
Then
S(pp) = —Trpy logops = tr h(Ka),
h(x) = —xlogyx —(1—x)logy(1—x), 0 <x <1,

where Tr and tr denote the trace in the 212! - and |()|-dimensional spaces.

Pastur (TD ILT) Ent-Rand Paris, 15 October 2014 7/22



Extended Systems

Quasifree Fermions: Tranlation Invariant Case

Nice formulas but not too simple to use even in the translation invariant
case.

For the quadratic Hamiltonian with finite range and translation invariant
D the large-/ scaling of the entanglement entropy for any d > 1 (both
critical /9! log / and non critical /9~!) was established

(i) via upper and lower bounds,

(i) via certain conjectures on the subleading term in the Szego theorem
for Toeplitz determinants (Gioev-Klich 06, Wolf 08)

(iii) rigorously, by using a rather sophisticated techniques of modern
operator theory and harmonic analysis (Sobolev et al 14).

It turns out that the disordered case is in a way simpler (modulo basic
results of localization theory)

/ 22
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Extended Systems

Quasifree Fermions: Disordered Case

Choose D = (H — Ef)/ T, where H is the Hamiltonian of the
d-dimensional Anderson model with random i.i.d. potential V = {V;}cq)
and Ef is the Fermi energy lying in the bulk of spectrum of H. Then

K° = K |7=0 = 0(EF — H),

where 6 is the Heaviside function.

Thus, KO is the orthogonal projection on the ground state of the whole
system (the Slater determinant on the first n eigenstates of H, where
n/|Q| = N(Ef) and N(EF) is the Integrated Density of States of) H and
the entropy of the whole system is zero.

Start from the bounds (simple calculus or simple Maple)

9(x) < h(x) < (9(x))", p(x) = 4x(1—x), 0< 2 < In2
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Bounds for Entanglement Entropy

f(x)

—xlog x-(1-x) log (1-x)

—— (2x(1-x))"0.5
4x (1-x)
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Extended Systems

Quasifree Fermions
If K® = {Pik}jkeze then Kn = {Pj}jkea and for a=1/2 in the upper
bound

Ly < Sy < Up, Lpa =41tTp, Uy =21tr\/Tx, Ta = KA(1p — Ka).
Denote A the exterior of A and use the equality Y kezd |ij|2 = P;:

(FA)jk = Z 'DjtPtk, j, k € A.

teA
The large-A behavior of T's is determined by the large |j — k| decay of Pj.

I'A can be expressed via the current-current correlator determining the a.c.
conductivity. It is also closely related to the number
statistics in A.
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Extended Systems

Quasifree Fermions: Translation Invariant Case

In the 1d translation invariant case

sin pr ||

KaE

5A>82th, Jk_‘ k|2

and we have
SaA > (4/7%)logl, | >>1,

i.e., the violation of the area law (in the 1d case the boundedness of Su).
Likewise, for d > 1:
Sa > 19 ogl, [ >> 1.
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Mean Entanglement Entropy

Lower Bound
A fundamental result on the Anderson localization is the bound
—lli—k
(1Pyl) < eIl

valid for a translation invariant in mean and short correlated random
potentials and

(i) 1d case: all energies and and strengths of disorder;

(ii) d > 2 case : neighborhoods of band edges (any disorder) and for all
energies if the disorder is large enough.

Since |Pj| < 1, we have for T1;_4 = (|Py|?) < Ce™"U=*l and the above
lower bound implies

(Sp) Zc 197t I>>1

This suggests the validity of the area law scaling for the mean entropy and
any d if Er is in the localized spectrum.
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Mean Entanglement Entropy

Upper Bound
It follows from the above that

<5A> <UA> UA:2’[I‘\/FA, FA: KA(]-A_KA)-
Use the Peierls inequality: for any convex f (f”” < 0) and hermitian M

tr f(M) <) (M

with f(x) = 2y/x and M =T 5 and some calculus to obtain

1/2
(Un) S 427 =11t Z (Z Hkﬂ) '
and
c 19 <(Sp) < eyl 0< e <y <o,

We have the area law scaling for the mean entanglement entropy and
d < 1 if the fermi energy is in the localized spectrum.
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Entanglement Entropy of Typical Realizations (1d case)

Analytical Results

Write A = [-m, m], | =2m+ 1 and obtain L,, < S;, < Up,, where for
m>>1

Ly = LJ(T™V)+ Ly (T V),
the shift operator T acton V = {V;}? __ as (TV); = Vi1 and, eg.,

j=—c0

0 co
Ly=4 3 ) [Pul?

j=—00 k=1

The double sum is not zero and finite for all typical realizations (with
probability 1) again because of the exponential localization bound.
Likewise

Un U (T"V) + Uy (TTV).
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Bounds for the Entropy of Typical Realizations (1d case)

Histograms
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Bounds for the Entropy of Typical Realizations (1d case)

Conclusions

@ Histograms overlap, hence the entanglement entropy depends
nontrivially on the realizations of disorder, i.e., is not selfaveraging for
m >> 1. Indeed, if the entropy were nonrandom, then the whole
probability distribution of the upper bound has to lie on the right of
that of lower bound.
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Bounds for the Entropy of Typical Realizations (1d case)

Conclusions

@ Histograms overlap, hence the entanglement entropy depends
nontrivially on the realizations of disorder, i.e., is not selfaveraging for
m >> 1. Indeed, if the entropy were nonrandom, then the whole
probability distribution of the upper bound has to lie on the right of
that of lower bound.

@ Histograms are independent of / = 2m+ 1 2 15000. Indeed, if the
random potential is short correlated, the terms of the both bounds
are statistically independent for m >> 1, and since the potential is
translation and reflection symmetric in the mean, the probability
distributions of these terms are identical. Hence, for m >> 1 the
probability distribution of the r.h.s. of both bounds are the
convolutions of those of E(T and Z/{Oi. This is also confirmed by our
numerics.
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Convolutions: Lower Bound

Histograms
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Convolutions: Upper Bound

Histograms
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More Conclusions

@ Entropy is bounded with probability 1, i.e., satisfies the stochastic
area law, if its distribution is concentrated on a finite interval.
Otherwise, the entropy has to have "peaks" s, — o0, n — oo, where
s solves p(s,) =~ n~(179) 5 > 0 with p(s) the large-s tail of the
entropy probability distribution. In particular, if p(s) ~ e=5/%, then
sn >~ so(1+ &) log n, corresponding to the critical scaling of the
entropy. Note, however, that s,’s are just extremal and rather rare
peaks of randomly fluctuating entropy but not its "regular"
asymptotics.
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Emergence of the Area Law

Weak Disorder
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Emergence of the Area Law

Stronger Disorder
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