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Plan of  talk 

 Diffusion in media with spatially varying potentials and diffusivities 

 Kubo type formulae for mean squared displacement for varying diffusivity 

 Results for varying diffusivity in one dimension 

 Results for periodic potentials in one dimension 



Diffusion with spatially 
varying diffusivity 

@p(x, t)

@t
= r · (x)rp(x, t)

dXt =
p

2(Xt)dBt +r(Xt)dt

De = lim
t!1

D(t)

h(Xt �X0)
2i = 2dD(t)t

Fokker Planck  
Equation 

Stochastic differential 
Equation - Ito 

Time dependent diffusion constant 
defined via MSD  

Late time or effective diffusion constant 



Late time or effective 
diffusion constant 

Derp = j = rp

��er� = j = ��r�

erP = u = �r�

✏er� = D = ✏r�

Use equivalence between self  and collective diffusion constants for  
noninteracting tracers 

Effective diffusion 
constant 

Effective dielectric  
constant 

Effective conductivity 

Effective permeability 

· · · = 1

V

Z

V
dx · · ·

Steady state diffusion 
equation 

Equation for electric 
 displacement 

Ohm’s law 

Darcy’s law 

Spatial averaging 

For d> 1 difficult 
problem – studies 
date  from Maxwell 
and Rayleigh 



Diffusivity in one dimension 

De =
1



�1

Harmonic mean – capacitors and resistors in series 

In general in any dimension 
we have the bounds  

1



�1

 De  

Can use steady state method or mean first passage time to distance L fixed 
then  

Equivalence of  ensembles in large L, t limit L2 = 2DeT (L)
Not alway clear when this will work r · rT (x) = �1

FPT starting from x 



Temporal behavior of  D(t) 

Equilibrium distribution given by  
peq(x) =

1

V

(Large but finite system, periodic boundary conditions) 

At small times sde is  is dominated by diffusion (over drift) 

hdX2
t i = h2(Xt)idt = 2dt⇥

Z
dx (x)peq(x)

D(0) = 

lim
t!1

D(t) = De = �1�1
< D(0)

How does D(t) decay to its asymptotic value ? 



Numerical simulation MSD 
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Linear fit at late times 

(x) =

0

1 + ↵ cos(

2⇡x
l

)

l = 4⇡

↵ = 0.8



Behavior of   D(t) 
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Simulation 



Kubo formula for 
periodically varying 

diffusivity 
Xt �X0 =

Z t

0
ds

p
2(Xs)dBs +

Z t

0
ds r(Xs)

h(Xt �X0)
2 � 2(Xt �X0) ·

Z t

0
ds r(Xs) +

Z t

0

Z t

0
dsds0 r(Xs) ·r(Xs0)i

= h
Z t

0

Z t

0
dsds0

p
2(Xs)

p
2(Xs0)dBs · dBs0i

Integrate sde  

Square and rearrange 

Initial conditions – equilibrium over very large system V composed 
of  (N) elementary periodic cells   ⌦

is in equilibrium p0(y) =
1

|⌦|Y = X mod ⌦

p0(x) =
1

N |⌦|
In principle MSD saturates for a finite system 
but take system size much larger than distance 
diffused to observe late time diffusion constant 



Detailed balance property 

@p

@t
= �Hp

p(x,y, t) = exp(�tH)(x,y)

p(x,y, t) = p(y,x, t)

Hf(x) = �
Z

dyr · (x)r�(x� y)f(y) H = H†

Fokker Planck operator  self  adjoint 

p(x,y, 0) = �(x� y)

Fokker Planck equation for transition density 

Transition density symmetric 

Formal operator solution for 
transition density 



The cross term 
h(Xt �X0) ·

Z t

0
ds r(Xs)i =

Z t

0
ds

Z
dxdydx0 p(x,y; t� s)p(y,x0; s)p0(x0)x ·r(y)�

Z
dydx0 p(y,x0; s)p0(x0)x0 ·r(y)

only appearance of   
x0

h(Xt �X0) ·
Z t

0
ds r(Xs)i

=

Z t

0
ds

Z
dxdy p(x,y; t� s)p0(y)x ·r(y)�

Z
dydx0 p(y,x0; s)p0(x0)x0 ·r(y)

Change  
x x0to Write s’=t-s 

= 0 by symmetry of  p(x,y,t) 



The squared drift term 
(Xt) = (Yt)By defintion 

Y has same Fokker Planck equation as X but where H acts on functions  
on      with periodic boundary conditions ⌦

= 2

Z t

0
ds

Z s

0
ds0

Z

⌦
dxdy exp (�(s� s0)H) (x,y)p0(y)r(x) ·r(y)

Eigenfunction expansion of  H on  ⌦
exp(�tH)(x,y) =

1

|⌦| +
X

�>0

exp(��t) �(x) �(y)

 0(x) =
1p
|⌦|

h
Z t

0

Z t

0
dsds0 r(Xs) ·r(Xs0)i = 2

Z t

0
ds

Z s

0
ds0

Z

⌦
dxdy p(x,y; s� s0)p0(y)r(x) ·r(y)

Gives no contribution due to  
periodicity of   

=

2

|⌦|

Z

⌦
dxdy

⇥
tH 0�1

(x, y)�H 0�2
(x, y) +H 0�2

exp(�tH 0
)

⇤
r(x) ·r(y)

Where H’ denotes the operator H acting on the subspace of  
functions orthogonal to the zero eigenvalue eigenfunction 

H 0�1
pseudo Green’s function 



The right hand side 
h2(Xs)[dBs]

2i = 2ds
Off diagonal contributions are zero 
Ito convention 

 =
1

|⌦|

Z

⌦
dx (x)

D(t) = � 1

|⌦|d

Z

⌦
dxdyH 0�1

(x, y)r(x) ·r(y) +
1

⌦t

Z

⌦
dxdy

⇥
H 0�2

(x, y)�H 0�2
exp(�tH 0

)(x, y)
⇤
r(x) ·r(y)

Putting everything together 

De Transients 

D(t) = De +
C

t
Late time asymptotics  

Exponentially  
decaying terms 
gap in H’ 



Numerical test of  full Kubo 
formula 
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D
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0

1 + ↵ cos(

2⇡x
l

)

l = 4⇡
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Computing De and C 

De = � 1

d⌦

Z

⌦
dxr(x) · f(x)

f(x) =

Z

⌦
dyH 0�1(x,y)r(y)

C =
1

d|⌦|

Z

⌦
dx f

2(x)

where 

Boundary conditions on f 

(i) Periodic on  ⌦

(ii) 

Z

⌦
dx f(x) = 0

always postive 



Explicit results in 1d 
f(x) = �x+A+B

Z
x

0

dy

(y)

Periodicity in l gives: B = �1
�1

Orthogonality to constant gives: 

A =
1

l

Z
l

0
dx


x� 

�1
�1

Z
x

0
dy 

�1(y)

�

r(x) = �x+ 

�1
�1

Z
x

0
dy 

�1(y)Defining 

C =
1

l

Z l

0
dx (r(x)� r)2



What we find 

De = �1
�1 Recover the classic results from a dynamical 

Calculation ! 

(x) = K(
2⇡x

l

)Scaling:    write 

R(z) = �y +
1

K�1

Z y

0
dy0 K�1(y0)

C =
l2

(2⇡)3

Z 2⇡

0
dz

�
R(z)�R

�2 Must have this scaling by 
dimensional analysis – 
independent of      overall 
scale of diffusivity 

0



Diffusion in periodic 
potentials 

@

@t
p(x, t) = r · (rp(x, t) + �p(x, t)r�(x))Fokker Planck equation 

Can find a Kubo formula as before 

e =


exp(��) exp(���)
In one dimension 

Version for discrete random walks – Derrida J. Stat. Phys. 31, 433 (1983)  

Remarkable result – again only depends on one point function but also  
independent of  the sign of      ! �



Numerical MSD in 1d 
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C for a periodic potential in 
1d 

hA(x)ieq =

R L
0 dx exp (���(x))A(x)

Lhexp(���)i ,

�(x) = V (
2⇡x

l

)

Gibbs Boltzmann 
measure on cell  

R(x) = L

✓
x

L

� 1

Lhexp(��)i

Z
x

0
dx

0
exp (��(x

0
))

◆

C = hR2(x)ieq � hR(x)i2eq again positive 

Define 

hR2
(x)ieq =

l

2

(2⇡)

2
R 2⇡
0 dz

0
exp (��V (z

0
))

Z 2⇡

0
dz exp (��V (z))

"
z �

R z
0 dz

0
exp (�V (z

0
))

1
2⇡

R 2⇡
0 dz

0
exp (�V (z

0
))

#2

.

hR(x)ieq =

l

(2⇡)

R 2⇡
0 dz

0
exp (��V (z

0
))

Z 2⇡

0
dz exp (��V (z))

"
z �

R z
0 dz

0
exp (�V (z

0
))

1
2⇡

R 2⇡
0 dz

0
exp (�V (z

0
))

#

C = cl2 c independent of  l and  0



Low temperature limit 

e = 2⇡�
p
|V 00

(z
max

)|V 00
(z

min

) exp (��(V (z
max

)� V (z
min

))

Kramers’ Law 

C =
l2

(2⇡)2�V 00(zmin)

Point where maximum attained Point where minumum attained 

- so C is more sensitive to minimum of  
potential !  



Square well potentials 
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Conclusions 

•  Can derive Kubo type formula to dynamically derive effective late time 
diffusion constants showing equivalence between static and dynamic methods 

•  Late time correction in periodic systems behaves as C/t 

•  C depends on the spatial structure of  the potential or diffusivity fields – even 
when       depends on a one point function (in one dimension). 

•  Could help to interpret single particle tracking experiments and distinguish 
between normal and anomalous diffusion. 

e


