A Short Walk along Quantum Trajectories, in the Company of Alain

(On jumps and spikes in strong continuous measurement)

Michel Bauer, with D. Bernard and A. Tilloy

Conference in Honor of Alain Comtet, IHP, October 14-15, 2014
(1) Alain (and I)
(2) Open quantum systems and partial measurements
(3) On jumps and spikes

Alain (and I)

Alain, my teacher

- In 1986-1987
- Coherent states in QFT
- Kählen-Lehmann representation
- BRS transformation
- Landau levels
- Ward identities in QED
- One-loop effective potential for Φ^{4}
- Path integrals to prove θ-function identities
- ...

Alain, an inspirational colleague

- During the period 1990-2014 we met at most a few times a year. But each encounter was a great occasion for me to learn.
- The local time
- The Ray-Knight theorems
- The local time and Bessel processes
- ...

Alain in administration

- During the period 1990-2014 we met at most a few times a year.
- His role in the creation of LPTMS
- His role at IHP
- His role as a member of the IPhT evaluation committee
- His role for the connexions between probabilists and theoretical physicists (... well, this is not just administration)
- ...
- His views about the recent changes in the French science landscape

I hope you understand my deep gratitude for Alain, and why I'm so proud to be here today.

A Walk along Quantum Trajectories

Open quantum systems and partial measurements

Open quantum systems

- Open quantum systems are ubiquituous in nature
- Transport phenemena
- Contacts with reservoirs
- ...
- Nonunitary evolution of a part from unitary evolution of the whole Universe
- The body of knowledge is huge ...
- ... but today's aims are very modest :
- Markovian setting
- Non-unitary evolution due to partial measurements
- An example of quantum trajectories with
- unexpected
- but universal
features

Open quantum systems

- The Hilbert space of the "Universe" splits as :

$$
\mathcal{H}=\mathcal{H}_{s} \otimes \mathcal{H}_{e}
$$

- the state of \mathcal{H} is described by a density matrix ρ
- The "one time step" evolution operator on \mathcal{H} is U

$$
\rho \rightarrow U \rho U^{\dagger}
$$

- The subsystem described by \mathcal{H}_{s} is our real interest ...
- The relevant information is encoded in partial traces

$$
\rho_{s}:=\operatorname{Tr}_{\mathcal{H}_{e}} \rho
$$

Effect of U on ρ_{s} ? Complicated in general!

Measurement

- Measure an observable Λ on \mathcal{H}_{e} after one time step:
- One time step evolution

$$
\rho \rightarrow U_{\rho} U^{\dagger}
$$

- Measurement of Λ on \mathcal{H}_{e}

$$
U_{\rho} U^{\dagger} \rightarrow \frac{\langle i| U_{\rho} U^{\dagger}|i\rangle \otimes|i\rangle\langle i|}{\operatorname{Tr}_{\mathcal{H}}\langle i| U_{\rho} U^{\dagger}|i\rangle \otimes|i\rangle\langle i|}
$$

with probability $p_{i}:=\operatorname{Tr}_{\mathcal{H}}\langle i| U_{\rho} U^{\dagger}|i\rangle \otimes|i\rangle\langle i|$.

- Basis $|i\rangle$ diagonalizes $\Lambda:=\sum_{i} \lambda_{i}|i\rangle\langle i|$.
- $p_{i}:=\operatorname{Tr}_{\mathcal{H}_{s}}\langle i| U \rho U^{\dagger}|i\rangle$.

Reminder

- If O is an operator on \mathcal{H} and $|i\rangle \in \mathcal{H}_{e}$

$$
\left(\mathrm{Id}_{\mathcal{H}_{s}} \otimes|i\rangle\langle i|\right) O\left(\mathrm{Id}_{\mathcal{H}_{s}} \otimes|i\rangle\langle i|\right)=:\langle i| O|i\rangle \otimes|i\rangle\langle i|
$$

- Don't forget $\langle i| O|i\rangle$ is still an operator on \mathcal{H}_{s}.

Measurement (2)

- If $\rho=\rho_{s} \otimes|\psi\rangle\langle\psi|$ the effect on ρ_{s} is simple :

$$
\rho_{s} \rightarrow \rho_{s}^{\prime}:=\frac{A_{i} \rho_{s} A_{i}^{\dagger}}{\operatorname{Tr}_{\mathcal{H}_{s}} A_{i} \rho_{s} A_{i}^{\dagger}} \text { with proba } p_{i}:=\operatorname{Tr}_{\mathcal{H}_{s}} A_{i} \rho_{s} A_{i}^{\dagger}
$$

- where $A_{i}:=\langle i| U|\psi\rangle$ (still an operator on \mathcal{H}_{s})
- Consistency relation

$$
\sum_{i} A_{i}^{\dagger} A_{i}=\mathrm{Id}_{\mathcal{H}_{s}}
$$

- The map $\rho_{s} \rightarrow \rho_{s}^{\prime}$ defines a random dynamical system
- Though we cheated, iteration is meaningful
- Arbitrary consistent families A_{i} 's can be obtained by unitary evolutions

On jumps and spikes

An illustrative example

- \mathcal{H}_{s} has dimension $d=2$
- $\left\{A_{i}\right\}=\left\{A_{+}, A_{-}\right\}$
- ρ_{s}, A_{+}, A_{-}are real
- $A_{+}^{2}+A_{-}^{2}=\operatorname{ld}_{\mathcal{H}_{s}}$
- $\rho_{s}:=\frac{1}{2}\left(\mathrm{Id}+X \sigma_{z}+K \sigma_{x}\right)$
- $A_{+}:=\left(\begin{array}{cc}\cos \alpha \cos \beta & \sin \alpha \cos \beta \\ -\sin \alpha \sin \beta & \cos \alpha \sin \beta\end{array}\right)$
- $A_{-}:=\left(\begin{array}{cc}\cos \alpha \sin \beta & \sin \alpha \sin \beta \\ -\sin \alpha \cos \beta & \cos \alpha \cos \beta\end{array}\right)$

Purification

- Unless $|\sin 2 \beta|=1$
- The iterates of $\operatorname{det} \rho_{s}$ decrease randomly but exponentially to 0 , i.e. iterates of ρ_{s} purify
- Consequence for $d=2$ of the general identity
- $\mathbb{E}\left(\left(\operatorname{det} \rho_{s}^{\prime}\right)^{\frac{1}{d}}\right)=\left(\operatorname{det} \rho_{s}\right)^{\frac{1}{d}} \sum_{i}\left(\operatorname{det} A_{i}^{\dagger} A_{i}\right)^{\frac{1}{d}} \leq\left(\operatorname{det} \rho_{s}\right)^{\frac{1}{d}}$
- Supermartingale convergence theorem

An illustrative example (2)

- $\beta=\pi / 4$: Hamiltonian evolution of the system

$$
X^{\prime}=X \cos 2 \alpha+K \sin 2 \alpha \quad K^{\prime}=-X \sin 2 \alpha+K \cos 2 \alpha
$$

\rightarrow Rabi oscillations (α small)

An illustrative example (3)

- $\alpha=0$: progressive nondemolition measurement (martingales)

$$
\begin{array}{ll}
X^{\prime}=\frac{X+\cos 2 \beta}{1+X \cos 2 \beta} & K^{\prime}=\frac{K \sin 2 \beta}{1+X \cos 2 \beta} \text { with prob } \frac{1+X \cos 2 \beta}{2} \\
X^{\prime}=\frac{X-\cos 2 \beta}{1-X \cos 2 \beta} & K^{\prime}=\frac{K \sin 2 \beta}{1-X \cos 2 \beta} \text { with prob } \frac{1-X \cos 2 \beta}{2}
\end{array}
$$

An illustrative example (3')

- Pure progressive measurement is realized in experiments:
- C. Guerlin et al (including S. Haroche), Nature 448 (2007) 889-893, Progressive field-state collapse...

An illustrative example (4)

- What if Hamiltonian dynamics and measurement are in competition?

An illustrative example (4)

- What if Hamiltonian dynamics and measurement are in competition?

An illustrative example (4)

- What if Hamiltonian dynamics and measurement are in competition?

- Details of the strong measurement regime

An illustrative example (5)

- Goal : understand the features of the strong measurement regime
- The jumps of X and their statistics
- The sign changes of K
- The spikes of X, K and their statistics
- ... in the continuous time limit

An illustrative example (6)

The continuous time limit

- $d X_{t}=\gamma u K_{t} d t-\gamma\left(1-X_{t}^{2}\right) d B_{t}$
- $d K_{t}=-\left(\frac{\gamma^{2}}{2} K_{t}+\gamma u X_{t}\right) d t+\gamma K_{t} X_{t} d B_{t}$
- $\dot{X}_{t}=\gamma u K_{t}-\gamma\left(1-X_{t}^{2}\right) \xi_{t} \quad \dot{K}_{t}=-\left(\frac{\gamma^{2}}{\mathbf{2}} K_{t}+\gamma u X_{t}\right)+\gamma K_{t} X_{t} \xi_{t} \quad\left\langle\xi_{s} \xi_{t}\right\rangle=\delta(t-s)$
- Purification (after a time $\sim \gamma^{-2}, X_{t}^{2}+K_{t}^{2} \simeq 1$)
- $X_{t}:=\cos \Theta_{t} \quad K_{t}:=-\sin \Theta_{t}$
- $d \Theta_{t}=\left(\gamma u-\frac{\gamma^{2}}{2} \sin \Theta_{t} \cos \Theta_{t}\right) d t+\gamma \sin \Theta_{t} d B_{t}$
- Near $\theta=k \pi$: sign changes of K

Quantum Zeno effect

- γ^{-2} is the time scale of measurement
- u is the parameter for Hamiltonian evolution
- Why rescale $u \rightarrow \gamma u$?

An illustrative example (7)

Invariant measure

- By classical formulæ:

$$
\mu(\theta)=\frac{2 J}{\gamma^{2}} \frac{e^{-\frac{2 u}{\gamma} \cot \theta}}{\sin ^{3} \theta} \int_{\theta}^{\pi} d \eta \sin \eta e^{\frac{2 u}{\gamma} \cot \eta \quad J \text { is the current }}
$$

- The tentative currentless invariant measure $\mu(\theta) \propto \sin ^{-3} \theta e^{\frac{-2 u}{\gamma} \cot \theta}$ is not integrable

Jump mean waiting time

- The waiting time is $T=1 / \mathrm{J}$

$$
T=\frac{2}{\gamma^{2}} \int_{0}^{\pi} d \theta \frac{e^{-\frac{2 u}{\gamma} \cot \theta}}{\sin ^{3} \theta} \int_{\theta}^{\pi} d \eta \sin \eta e^{\frac{2 u}{\gamma} \cot \eta} \sim_{\gamma \rightarrow \infty} \frac{1}{u^{2}}+\cdots
$$

where ... involves horrible and inaccessible logarithms

A nice detour

Inaccessible? Look at

- The Lyapunov Exponent of Products of Random 2x2 Matrices Close to the Identity
- Comtet, A., Luck, J-M., Texier, C. \& Tourigny, Y.
- Journal of Statistical Physics. 150, 1, p. 13-65.
- Nice trick: the Lyapunov Exponent has a companion, i.e is the real part of an analytic function.
- We are indeed looking at products of random matrices close to the identity, though they are not independent
- Nevertheless, the trick allows to rewrite the double integral as a quotient of two simple integrals
- In the case at hand, a quotient of Bessel functions
\rightarrow Large γ expansion is explicit!!!
- Alas (?!), the corrections play no role in the sequel

An illustrative example (8)

"Theorem" Part 1

- For large γ the finite dimensional distributions of the process $Q_{t}:=\frac{1+X_{t}}{2}$ converge weakly to those of a finite state Markov process \bar{Q}_{t} on $\{0,1\}$.
- The Markov generator is $\left(\begin{array}{cc}-u^{2} & u^{2} \\ u^{2} & -u^{2}\end{array}\right)$

$$
\text { - } \rho=\left(\begin{array}{ll}
Q & \ddots
\end{array}\right)
$$

- The $\gamma\left|K_{t}\right|\left(\right.$ resp. $\left.\gamma^{2}\left(1-X_{t}\right)^{2}\right)$ become independent random variables with distribution $4 u^{2} k^{-3} e^{-2 u / k} d k$ (resp. $2 u^{2} x^{-2} e^{-2 u / \sqrt{x}} d x$)

An illustrative example (8)

"Theorem" Part 2

- The extrema of the spikes of Q_{t} converge to spacetime Poisson point processes on $[0,1] \times[0,+\infty[$ with intensity

$$
\left(Q^{-2} d Q+\delta(1-Q)\right) u^{2} d t \text { or }\left((1-Q)^{-2} d Q+\delta(Q)\right) u^{2} d t
$$

- Corrolary : the process Q_{t} does not converge weakly to the finite state process \bar{Q}_{t}.
- Emergence of scale invariance

An illustrative example (9)

An illustrative example (10)

Comments

- The spikes can be seen as aborted jumps ...
- ... or the jumps as successful spikes

- It is high-jumping with a bar at height 1 and in average q^{-1} missed jumps above q before each success.
- In the large γ limit,
- the Hamiltonian evolution turns into a boundary condition
- in the bulk everything is dominated by measurement

Conclusions

- Quantum jumps and quantum trajectories are observed daily in experiments
- The usual interpretation is that there are intrisic jumps in the measurement randomness
- The other features (spikes?) are interpeted as imperfections of the apparatus and/or as the effect of other sources of noise
- Spikes are a definite sign that something else is going on
- The features presented in the illustrative example :
- emergence of jumps
- finite state Markov process limit
- spikes with their scale invariant distribution are completely universal for strong partial measurement experiments in the continuous time limit!
\rightarrow A non-standard limit theorem
BBT, in preparation

