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Alain (and I)



Alain, my teacher

• In 1986-1987
• Coherent states in QFT
• Kählen-Lehmann representation
• BRS transformation
• Landau levels
• Ward identities in QED
• One-loop effective potential for Φ4

• Path integrals to prove θ-function identities
• ...
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Alain, an inspirational colleague

• During the period 1990-2014 we met at most a few times a
year. But each encounter was a great occasion for me to
learn.

• The local time
• The Ray-Knight theorems
• The local time and Bessel processes
• ...

A Walk along Quantum Trajectories 4/26 Sec. 1 : Alain (and I)



Alain in administration

• During the period 1990-2014 we met at most a few times a
year.

• His role in the creation of LPTMS
• His role at IHP
• His role as a member of the IPhT evaluation committee
• His role for the connexions between probabilists and

theoretical physicists (... well, this is not just administration)
• ...
• His views about the recent changes in the French science

landscape

A Walk along Quantum Trajectories 5/26 Sec. 1 : Alain (and I)



I hope you understand my deep gratitude for Alain, and why I’m
so proud to be here today.
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Open quantum systems and
partial measurements



Open quantum systems

• Open quantum systems are ubiquituous in nature
• Transport phenemena
• Contacts with reservoirs
• ...

• Nonunitary evolution of a part from unitary evolution of the
whole Universe

• The body of knowledge is huge ...
• ... but today’s aims are very modest :

• Markovian setting
• Non-unitary evolution due to partial measurements
• An example of quantum trajectories with

• unexpected
• but universal

features
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Open quantum systems

• The Hilbert space of the “Universe” splits as :

H = Hs ⊗He

• the state of H is described by a density matrix ρ
• The “one time step” evolution operator on H is U

ρ→ UρU†

• The subsystem described by Hs is our real interest ...
• The relevant information is encoded in partial traces

ρs := TrHe ρ

Effect of U on ρs ? Complicated in general !
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Measurement
• Measure an observable Λ on He after one time step:

• One time step evolution

ρ→ UρU†

• Measurement of Λ on He

UρU† → 〈 i |UρU† | i 〉 ⊗ | i 〉〈 i |
TrH 〈 i |UρU† | i 〉 ⊗ | i 〉〈 i |

with probability pi := TrH 〈 i |UρU† | i 〉 ⊗ | i 〉〈 i |.

• Basis | i 〉 diagonalizes
Λ :=

∑
i λi | i 〉〈 i |.

• pi := TrHs 〈 i |UρU† | i 〉.

Reminder
• If O is an operator on H and | i 〉 ∈ He

(IdHs ⊗| i 〉〈 i |)O(IdHs ⊗| i 〉〈 i |) =: 〈 i |O | i 〉⊗| i 〉〈 i |

• Don’t forget 〈 i |O | i 〉 is still an operator on Hs .
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Measurement (2)

• If ρ = ρs ⊗ |ψ 〉〈ψ | the effect on ρs is simple :

ρs → ρ′s :=
AiρsA

†
i

TrHs AiρsA
†
i

with proba pi := TrHs AiρsA
†
i

• where Ai := 〈 i |U |ψ 〉 (still an operator on Hs )

• Consistency relation

∑
i

A
†
i Ai = IdHs

• Arbitrary consistent
families Ai ’s can be
obtained by unitary
evolutions

• The map ρs → ρ′s defines a random
dynamical system

• Though we cheated, iteration is meaningful

• Orbits are called Quantum Trajectories
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On jumps and spikes



An illustrative example

• Hs has dimension
d = 2

• {Ai} = {A+,A−}
• ρs ,A+,A− are real
• A2

+ + A2
− = IdHs

• ρs := 1
2(Id + Xσz + Kσx)

• A+ :=

(
cosα cosβ sinα cosβ
− sinα sinβ cosα sinβ

)
• A− :=

(
cosα sinβ sinα sinβ
− sinα cosβ cosα cosβ

)
Purification

• Unless | sin 2β| = 1
• The iterates of det ρs decrease randomly but exponentially to

0, i.e. iterates of ρs purify
• Consequence for d = 2 of the general identity

• E
(

(det ρ′s)
1
d

)
= (det ρs)

1
d
∑

i (detA†
i Ai )

1
d ≤ (det ρs)

1
d

• Supermartingale convergence theorem
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An illustrative example (2)

• β = π/4 : Hamiltonian evolution of the system

X ′ = X cos 2α + K sin 2α K ′ = −X sin 2α + K cos 2α

→ Rabi oscillations (α small)
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An illustrative example (3)
• α = 0 : progressive nondemolition measurement (martingales)

X ′ =
X + cos 2β

1 + X cos 2β
K ′ =

K sin 2β

1 + X cos 2β
with prob

1 + X cos 2β

2

X ′ =
X − cos 2β

1− X cos 2β
K ′ =

K sin 2β

1− X cos 2β
with prob

1− X cos 2β

2
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An illustrative example (3’)
• Pure progressive measurement is realized in experiments :

• C. Guerlin et al (including S. Haroche), Nature 448 (2007)
889-893, Progressive field-state collapse...
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An illustrative example (4)

• What if Hamiltonian dynamics and measurement are in
competition ?
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An illustrative example (4)

• What if Hamiltonian dynamics and measurement are in
competition ?
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An illustrative example (4)
• What if Hamiltonian dynamics and measurement are in

competition ?

• Details of the strong measurement regime
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An illustrative example (5)

• Goal : understand the features of the strong measurement
regime

• The jumps of X and their statistics
• The sign changes of K
• The spikes of X ,K and their statistics

• ... in the continuous time limit

A Walk along Quantum Trajectories 18/26 Sec. 3 : On jumps and spikes



An illustrative example (6)
The continuous time limit

• dXt = γuKtdt − γ(1− X 2
t )dBt

• dKt = −(γ
2

2 Kt + γuXt)dt + γKtXtdBt

• Ẋt = γuKt − γ(1− X2
t )ξt K̇t = −( γ

2
2 Kt + γuXt ) + γKtXtξt 〈ξsξt〉 = δ(t − s)

• Purification (after a time ∼ γ−2, X 2
t + K 2

t ' 1)
• Xt := cos Θt Kt := − sin Θt

• dΘt = (γu − γ2

2 sin Θt cos Θt)dt + γ sin ΘtdBt

• Near θ = kπ : sign changes of K

Quantum Zeno effect
• γ−2 is the time scale of measurement
• u is the parameter for Hamiltonian evolution
• Why rescale u → γu ?
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An illustrative example (7)
Invariant measure

• By classical formulæ:

µ(θ) =
2J
γ2

e−
2u
γ

cot θ

sin3 θ

∫ π

θ
dη sin ηe

2u
γ

cot η J is the current

• The tentative currentless invariant measure
µ(θ) ∝ sin−3 θe

−2u
γ

cot θ is not integrable

Jump mean waiting time
• The waiting time is T = 1/J

T =
2
γ2

∫ π

0
dθ

e−
2u
γ

cot θ

sin3 θ

∫ π

θ
dη sin ηe

2u
γ

cot η ∼γ→∞
1
u2 + · · ·

where · · · involves horrible and inaccessible logarithms
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A nice detour
Inaccessible? Look at

• The Lyapunov Exponent of Products of Random 2x2 Matrices
Close to the Identity

• Comtet, A., Luck, J-M., Texier, C. & Tourigny, Y.
• Journal of Statistical Physics. 150, 1, p. 13-65.

• Nice trick: the Lyapunov Exponent has a companion, i.e is
the real part of an analytic function.

• We are indeed looking at products of random matrices close
to the identity, though they are not independent

• Nevertheless, the trick allows to rewrite the double integral
as a quotient of two simple integrals

• In the case at hand, a quotient of Bessel functions
→ Large γ expansion is explicit ! ! !

• Alas ( ? !), the corrections play no role in the sequel

A Walk along Quantum Trajectories 21/26 Sec. 3 : On jumps and spikes



An illustrative example (8)
“Theorem” Part 1

• For large γ the finite dimensional distributions of
the process Qt := 1+Xt

2 converge weakly to those
of a finite state Markov process Qt on {0, 1}.

• The Markov generator is
(
−u2 u2

u2 −u2

)
• The γ|Kt | (resp. γ2(1− Xt)

2) become independent
random variables with distribution 4u2k−3e−2u/kdk
(resp. 2u2x−2e−2u/

√
xdx)

• ρ =

(
Q ·
· ·

)
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An illustrative example (8)
“Theorem” Part 2

• The extrema of the spikes of Qt converge to spacetime
Poisson point processes on [0, 1]× [0,+∞[ with intensity(

Q−2dQ + δ(1− Q)
)
u2dt or

(
(1− Q)−2dQ + δ(Q)

)
u2dt

• Corrolary : the process Qt does not converge weakly to the
finite state process Qt .

• Emergence of scale invariance
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An illustrative example (9)
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An illustrative example (10)
Comments

• The spikes can be seen as aborted jumps ...
• ... or the jumps as successful spikes

• It is high-jumping with a bar at height 1 and in average q−1

missed jumps above q before each success.

• In the large γ limit,
• the Hamiltonian evolution turns into a boundary condition
• in the bulk everything is dominated by measurement
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Conclusions
• Quantum jumps and quantum trajectories are observed daily

in experiments
• The usual interpretation is that there are intrisic jumps in

the measurement randomness
• The other features (spikes ?) are interpeted as imperfections

of the apparatus and/or as the effect of other sources of noise

• Spikes are a definite sign that something else is going on
• The features presented in the illustrative example :

• emergence of jumps
• finite state Markov process limit
• spikes with their scale invariant distribution

are completely universal for strong partial measurement
experiments in the continuous time limit !
→ A non-standard limit theorem BBT, in preparation
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