Record statistics in time series with drift: theory and applications

Joachim Krug
Institute of Theoretical Physics, University of Cologne

- Introduction: What are records, and why do we care?
- Record statistics beyond i.i.d. RV's: The linear drift model
- Application: Record-breaking temperatures and global warming
- Correlations between record events

> Joint work with Jasper Franke and Gregor Wergen

Records in popular culture

9.11.2006:

1188 Parisians kissing at La Defense

http://www.guinnessworldrecords.com/gwrday/frenchkiss.aspx

Basic facts about records I

- A record is an entry in a sequence of random variables (RV's) X_{n} which is larger (upper record) or smaller (lower records) than all previous entries

- If the RV's are independent and identically distributed (i.i.d.), the probability for a record at time n is $P_{n}=1 / n$ by symmetry
- This result is universal, i.e. independent of the underlying distribution (provided it is continuous)

Basic facts about records II

N. Glick, Am. Math. Mon. 85, 2 (1978)

- The expected number of records up to time n is

$$
\left\langle R_{n}\right\rangle=\sum_{k=1}^{n} \frac{1}{k}=\ln (n)+\gamma+\mathscr{O}(1 / n)
$$

where $\gamma \approx 0.5772156649 \ldots$ is the Euler-Mascheroni constant

- Record events are independent: The sequence of records is a Bernoulli process with success probability P_{n}, which converges to a Poisson process in logarithmic time for large n
- In particular, the variance of the number of records is

$$
\left\langle\left(R_{n}-\left\langle R_{n}\right\rangle\right)^{2}\right\rangle=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k^{2}}\right)=\ln (n)+\gamma-\frac{\pi^{2}}{6}+\mathscr{O}(1 / n)
$$

Beyond the i.i.d. model

Records in growing populations

M.C.K. Yang, J. Appl. Prob. 12, 148 (1975)

- Motivation: Olympic records occur at an essentially constant (nondecreasing) rate
- Model: At each time n a new "generation" of N_{n} i.i.d. RV's becomes available simultaneously. By symmetry, the probability of a new record at time n is then

$$
P_{n}=\frac{N_{n}}{\sum_{k=1}^{n} N_{k}}
$$

- For an exponentially growing population, $N_{n}=a^{n}$, this yields

$$
P_{n}=\frac{a^{n}(a-1)}{a\left(a^{n}-1\right)} \rightarrow \frac{a-1}{a} \text { for } n \rightarrow \infty .
$$

- The growth of the world population is insufficient to explain the occurrence rate of Olympic records under this model.

Records from broadening distributions

JK, JSTAT (2007) P07001

- Let X_{n} be drawn from $p_{n}(x)=n^{-\alpha} f\left(x / n^{\alpha}\right)$ with $\alpha>0$
- Asymptotic growth of the number of records depends on the universality class of f in the sense of extreme value statistics.

Fréchet class: $f(x) \sim x^{-(\mu+1)} \quad \Rightarrow \quad\left\langle R_{n}\right\rangle \approx(1+\alpha \mu) \ln (n)$
Gumbel class: $f(x) \sim \exp \left[-x^{\beta}\right] \Rightarrow\left\langle R_{n}\right\rangle \sim \alpha \ln ^{2}(n)$
Weibull class: $f(x) \sim\left(x_{\max }-x\right)^{\delta-1}, \delta>0 \quad \Rightarrow \quad\left\langle R_{n}\right\rangle \sim\left(\alpha^{\delta} n\right)^{1 /(\delta+1)}$

- Effect of broadening is stronger for fast decaying tails
- Broadening generically induces correlations between record events (see later)

Records of random walks

S.N. Majumdar \& R.M. Ziff, PRL 101, 050601 (2008)

- Let X_{n} be an unbiased random walk:

$$
X_{n}=\sum_{k=1}^{n} \eta_{k}
$$

with i.i.d. RV's η_{k} drawn from a symmetric, continuous distribution $\phi(\eta)$

- The probability of having m records in n steps is given by

$$
P(m, n)=\binom{2 n-m+1}{n} 2^{-2 n+m-1} \rightarrow \frac{1}{\sqrt{\pi n}} \exp \left[-m^{2} / 4 n\right]
$$

- Mean number of records: $\left\langle R_{n}\right\rangle \approx \sqrt{4 n / \pi}$
- This result does not require $\phi(\eta)$ to have finite variance

> See also poster by Gregor Wergen!

The linear drift model

R. Ballerini \& S. Resnick (1985); J. Franke, G. Wergen, JK, JSTAT (2010) P10013

- Let $X_{n}=Y_{n}+v n$ with i.i.d. RV's Y_{n} and a drift speed $v>0$
- Let Y_{n} have probability density $p(y)$ and probability distribution function $q(x)=\int^{x} d y p(y)$. Then

$$
P_{n}(v)=\int d x_{n} p\left(x_{n}-v n\right) \prod_{k=1}^{n-1} q\left(x_{n}-v k\right)=\int d x p(x) \prod_{k=1}^{n-1} q(x+v k)
$$

- Limiting record rate

$$
\lim _{n \rightarrow \infty} P_{n}(v) \equiv P_{\infty}(v)>0
$$

for $v>0$ provided $p(x)$ has a finite first moment.

- Model also appears in the context of elastic manifolds in random media (Le Doussal \& Wiese, PRE 2009) and evolutionary pathways in random fitness landscapes (Franke et al., PLoS Comp. Biol., in press)

Simulation of the record rate for Gaussian RV's

Crossover time scale $n^{*}(v) \rightarrow \infty$ for $v \rightarrow 0$

An exactly solvable case

- For the Gumbel distribution $q(x)=\exp \left[-e^{-x / b}\right]$

$$
\begin{aligned}
\prod_{k=1}^{n-1} q(x-v k) & =\exp \left[-e^{-x / b} \sum_{k=1}^{n-1} e^{-v k / b}\right]=q(x)^{\alpha_{n}} \text { with } \alpha_{n}=\sum_{k=1}^{n-1}\left(e^{-v / b}\right)^{k} \\
& \Rightarrow P_{n}(v)=\int_{0}^{1} d q q^{\alpha_{n}}=\frac{1}{\alpha_{n}+1}=\frac{1-e^{-v / b}}{1-e^{-n v / b}}
\end{aligned}
$$

- Limiting record rate for $v>0$ is $P_{\infty}(v)=1-e^{-v / b}$
- For $v<0$ the record rate decays exponentially with n and the expected number of records remains finite.
- Conjecture: The expected number of records is finite for $v<0$ for any distribution with a finite mean
- Gumbel distribution is the only case in which the stochastic independence of record events of the i.i.d. model is preserved.

Ordering probability

J. Franke, G. Wergen, JK, JSTAT (2010) P10013

- What is the probability Π_{N} that all N events are upper records, i.e. that

$$
X_{1}<X_{2}<\ldots<X_{N} ?
$$

- For i.i.d. RV's we have $\Pi_{N}=\prod_{k=1}^{N} \frac{1}{k}=\frac{1}{N!}$
- For the linear drift model with Gumbel-distributed i.i.d. part one finds

$$
\Pi_{N}=\frac{\left(1-e^{-\theta}\right)^{N}}{\prod_{k=1}^{N}\left(1-e^{-\theta k}\right)} \approx \sqrt{\frac{\theta}{2 \pi}} e^{\pi^{2} / 6 \theta}\left(1-e^{-\theta}\right)^{N} \text { for } N \rightarrow \infty
$$

with $\theta=v / b$

- Conjecture: The ordering probability Π_{N} decays exponentially (rather than factorially) with N for $v>0$ and any distribution with a finite mean

Application to global warming

The 2010 summer heat wave

http://www.spiegel.de/

The 2010 summer heat wave

http://climateprogress.org/2010/07/05/heat-wave-global-warming/

Temperature records in the USA

http://www.ucar.edu/news/releases/2009/maxmin.jsp
based on G.A. Meehl et al., Geophys. Res. Lett. 36 (2009) L23701

Record-breaking temperatures and global warming

R.E. Benestad (2003); S. Redner \& M.R. Petersen (2006)

- Question: Does global warming significantly increase the occurrence of record-breaking high daily temperatures?
- Model: The temperature on a given calendar day of the year is an independent Gaussian RV with constant standard deviation σ and a mean that increases at speed v

- Typical values: $v \approx 0.03^{\circ} \mathrm{C} / \mathrm{yr}, \sigma \approx 3.5^{\circ} \mathrm{C} \Rightarrow v / \sigma \ll 1$

Expansion for small drift speed

J. Franke, G. Wergen, JK, JSTAT (2010) P10013

- We want to compute the record rate $P_{n}(v)=\int d x p(x) \prod_{k=1}^{n-1} q(x+v k)$
- To leading order in v we have $q(x+v k) \approx q(x)+v k p(x)$

$$
\Rightarrow P_{n} \approx \int d x p(x) q(x)^{n-1}+\frac{v n(n-1)}{2} \int d x p(x)^{2} q(x)^{n-2}=\frac{1}{n}+v I_{n}
$$

with $I_{n}=\frac{n(n-1)}{2} \int d x p(x)^{2} q(x)^{n-2}$

- Asymptotic behavior of I_{n} depends on the universality class of p :

Fréchet class: $p(x) \sim x^{-(\mu+1)} \quad \Rightarrow \quad I_{n} \sim n^{-1 / \mu} \rightarrow 0$
Weibull class: $p(x) \sim\left(x_{\max }-x\right)^{\delta-1}, \delta>\frac{1}{2} \quad \Rightarrow \quad I_{n} \sim n^{1 / \delta} \rightarrow \infty$
Gumbel class: $p(x) \sim e^{-x^{\beta}} \Rightarrow I_{n} \sim(\ln n)^{1-\frac{1}{\beta}}$

- Conjecture: Expansion is singular for Weibull distributions with $\delta<\frac{1}{2}$

Comparison to simulations: Fréchet class

- In the Gaussian case I_{n} can be evaluated in closed form only for $n=2,3$
- A saddle point approximation for large n yields the result

$$
P_{n}(v) \approx \frac{1}{n}+\frac{v}{\sigma} \frac{(2 \pi)^{3 / 2}}{e^{2}} \sqrt{\ln \left(n^{2} / 8 \pi\right)}
$$

Analysis of temperature records

G. Wergen, JK, EPL 9230008 (2010)

Maximum temperature on June 16 in Parc Montsouris

Expected number of records in a stationary climate is 5.3 ± 1.9

Data sets for daily temperatures

European data

- 43 stations over 100 year period 1906-2005
- 187 stations over 30 year period 1976-2005
- 30 year data: Constant warming rate $v \approx 0.047 \pm 0.003^{\circ} \mathrm{C} / \mathrm{yr}$, standard deviation $\sigma \approx 3.4 \pm 0.3^{\circ} \mathrm{C} \Rightarrow v / \sigma \approx 0.014$

American data

- 10 stations over 125 year period 1881-2005
- 207 stations over 30 year period 1976-2005
- Continental climate implies larger variability:

$$
\sigma=4.9 \pm 0.1^{\circ} \mathrm{C}, v=0.025 \pm 0.002^{\circ} \mathrm{C} / \mathrm{yr} \Rightarrow v / \sigma \approx 0.005
$$

- Significant effect of rounding to integer degrees Fahrenheit

European data: Mean daily maximum temperature

Full line: Sliding 3-year average

European data: No trend in the standard deviation

European data: Temperature fluctuations are Gaussian

Record frequency in Europe: 1976-2005

- Expected number of records in stationary climate: $\frac{365}{30} \approx 12$
- Observed record rate is increased by about $40 \% \Rightarrow 5$ additional records

Mean record number: 1976-2005

Record frequency in the US: 1881-2005

Dashed line: $P_{n}=(1-d / \sigma) / n$ with discretization unit $d=1^{\circ} \mathrm{F}=(5 / 9)^{\circ} \mathrm{C}$

Re-analysis data: Record maps

number of records 1957-2000 normalized warming rate v / σ

Expected record number in a stationary climate is 4.36

Re-analysis data: Seasonal variation

A record-based test of changing temperature variability

```
A. Anderson, A. Kostinski, J. Appl. Meteor. Climat. 49, 1681 (2010)
```

- For a given temperature time series, consider the quantity

$$
\mathscr{R} \equiv R_{>}^{H}-R_{<}^{H}+R_{>}^{L}-R_{<}^{L}
$$

where $R_{>}^{H, L}$ is the number of high (H) and low (L) records of the forward time series and $R_{<}^{H, L}$ the corresponding numbers backward in time

- \mathscr{R} is insensitive to drift, because it vanishes to leading order in the drift speed, but can pick up small changes in the variance of the time series
- Based on a large worldwide data set of monthly temperatures, Anderson \& Kostinski argue that $\langle\mathscr{R}\rangle<0$, indicating decreasing temperature variability.

A record-based test of changing temperature variability

A. Anderson, A. Kostinski, J. Appl. Meteor. Climat. 49, 1681 (2010)
$\langle\mathscr{R}\rangle$

Correlations between record events

August 12, 1987
Dry Bones

Records from broadening distributions

JK, JSTAT (2007) P07001

- RV's X_{n} drawn from $p_{n}(x)=n^{-\alpha} f\left(x / n^{\alpha}\right)$ with $\alpha>0$
- Simulations indicate sub-Poissonian fluctuations in the number of records, indicating that record events repel each other

Example: Uniform distribution

Record correlations in the linear drift model

G. Wergen, J. Franke, JK, arXiv:1105:3915

- Consider the quantity

$$
l_{N, N-1}(v)=\frac{P_{N, N-1}}{P_{N} P_{N-1}} \text { with } P_{N, N-1}=\operatorname{Prob}\left[X_{N} \text { record and } X_{N-1} \text { record }\right]
$$

- $l_{N, N-1}(0)=1$ and $l_{N, N-1}(v) \equiv 1$ for Gumbel-distributed i.i.d part
- $\lim _{N \rightarrow \infty} l_{N, N-1}(v)$ exists for $v>0$ but not necessarily for $v<0$
- Small v expansion yields $l_{N, N-1}(c) \approx 1+v J_{N}(v)$ with

$$
J_{N} \approx-\frac{1}{2} N^{4} \frac{d I_{N}}{d N}-N^{3} I_{N} \approx \frac{\kappa}{2} N^{3} I_{N}
$$

where κ is the extreme value index of $p(x) \sim(1+\kappa x)^{-\frac{\kappa+1}{\kappa}}$

Record correlations in the linear drift model

For details see poster by Jasper Franke

Conclusions

- Records statistics as a paradigm of non-stationary dynamics of rare events
- Linear drift model a simple yet rich generalization of record statistics to non-i.i.d. RV's
- Global warming affects the rate of record-breaking temperatures in a moderate but significant way
- Record events in the linear drift model can be positively or negatively correlated depending on the tail of the underlying distribution

