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Signal + noise model

Spatial Statistics often uses “ signal + noise model”, for example :

I precision agriculture
I neuro-sciences
I sea-waves modelling

Jean-Marc zaı̈s Rice method for the extremes of Gaussian fields



Examples
The record method d = 2 or 3

The maxima method
Processes defined on fractal sets

Signal + noise model

Spatial Statistics often uses “ signal + noise model”, for example :

I precision agriculture
I neuro-sciences
I sea-waves modelling

Jean-Marc zaı̈s Rice method for the extremes of Gaussian fields



Examples
The record method d = 2 or 3

The maxima method
Processes defined on fractal sets

Signal + noise model

Spatial Statistics often uses “ signal + noise model”, for example :

I precision agriculture
I neuro-sciences
I sea-waves modelling

Jean-Marc zaı̈s Rice method for the extremes of Gaussian fields



Examples
The record method d = 2 or 3

The maxima method
Processes defined on fractal sets

Precision agriculture

Representation of the yield per unit by GPS harvester .

Is there only noise or some region with higher fertility ? ?
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Neuroscience

The activity of the brain is recorded under some particular action and
the same question is asked

source : Maureen CLERC
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Sea-waves spectrum
Locally in time and frequency the spectrum of waves is registered.
We want to localize transition periods.
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In all these situations a good statistics consists in observing the
maximum of the (absolute value) of the random field for deciding if it
is typically (Noise) or too large (signal).
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The Rice method
M is the maximum of a smooth random process X(t), t ∈ Rd (d = 1) or
field (d > 1) .
We want to evaluate

P{M > u}

In dimension 1 : count the number of up-crossing

-h>wu
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The Rice formula

If X(t) is a regular (differentiable) process R→ R or a random field
Rd → Rd and if we consider its number of zeros :

Nu = #{t ∈ [0,T] : X(t) = u}(d = 1)

We obtain a random variable. In general nothing is known except for
the moments of this variable.
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For the expectation, for random processes (d = 1) we get the
simplest version of the Rice formula :

E(Nu) =

∫ T

0
E(|X′(t)|

∣∣X(t) = u)pX(t)(u),

where p is the density
The proof of this formula is based on some generalization of the
change of variable formula. It explains the term |X′(t)| .
For X : Rd → Rd, d > 1 we must put | det(X′(t)|.
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In larger dimension search for an other geometrical characteristic

I number of connected component of the excursion set :open
problem

I Euler characteristic an alternative to the preceding :
Conceptually complicated, computationally easy no bounds

I Number of maxima above the considered level : difficult to
compute the determinant but gives bounds

I Particular points on the level set : the record method
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The maxima method

Let us forget the boundary

{M > u} = There is a maximum above u =: {Mu > 0}

P{M > u} ≤ E(Mu)

=

∫ +∞

u
dx
∫

S
E
[
| det(X′′(t)) 1IX′′(t)≺0|

∣∣X(t) = x,X′(t) = 0
]
PX(t),X′(t)(x, 0)dt

Very difficult to compute : the expectation of absolute value of the
determinant
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Under some conditions, Roughly speaking the event

{M > u}

is almost equal to the events

”The level curve at level u is non-empty”

”The point at the southern extremity of the level curve exists”

”There exists a point on the level curve :
X(t) = u; X′1(t) = ∂X

∂t1
= 0; X′2(t) = ∂X

∂t2
> 0

X′′11(t) = ∂2X
∂t2

1
< 0”
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Forget the boundary

and define

Z(t) :=

(
X(t)
X′1(t)

)
The probability above is bounded by the expectation of the number of
roots of Z(t)− (u, 0)⇒ Rice formula

P{M > u} ≤ Boundary terms

+

∫
S

E(| det(Z′(t) 1IX′′1 (t)<0 1IX′2(t)>0|
∣∣X(t) = u,X′1(t) = 0)pX(t),X′1(t)(u, 0)dt,

The difficulty lies in the computation of the expectation of the
determinant
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The trick is that under the condition {X(t) = u,X′1(t)} = 0, the quantity

| det(Z′(t)| =
∣∣∣∣ X′1 X′2

X′′11 X′′12

∣∣∣∣
is simply equal to |X′2X′′11| . Taking into account conditions, we get the
following expression for the second integral∫

S
E(|X′′11(t)−X′2(t)+

∣∣X(t) = u,X′1(t) = 0)pX(t),X′1(t)(u, 0)dt.

Moreover under stationarity or some more general hypotheses, these
two random variables are independent.

Jean-Marc zaı̈s Rice method for the extremes of Gaussian fields



Examples
The record method d = 2 or 3

The maxima method
Processes defined on fractal sets

Theorem
Suppose that the set S is the square [0,T]2 and that the process is
stationary isotrope with E(X(t) = 0,var(X(t) = 1, var(X′(t) = Id and
satisfies some regularity conditions.
Then

P{M > u} ≤ Φ(u) +
√

2/πTφ(u) + T2/(2π)[cφ(u/c) + uΦ(u/c)]φ(u)
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Extension to dimension 3

Using Fourier method (Li and Wei 2009) we are able to compute the
expectation of the absolute value of a determinant in dimension 2.
It is a simple quadratic form.
We are able to extend the result to dimension 3 (Pham 2010).

P{M > u} ≤1− Φ(u) +
2σ1(S)√

2π
ϕ(u) +

σ2(S)ϕ(u)

4π
[√

12ρ′′ − 1ϕ(
u√

12ρ′′ − 1
) + uΦ(

u√
12ρ′′ − 1

)
]

+
σ3(S)ϕ(u)

(2π)
3
2

[
u2 − 1 +

(8ρ′′)
3
2 exp(−u2.(24ρ′′ − 2)−1)√

24ρ′′ − 2

]
,

σ1 caliper diameter ; σ2 perimeter, σ3 Lebesgue measure.
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Second order

Consider a realization with M > u, then necessarily there exist a local
maxima or a border maxima above U
Border maxima : local maxima in relative topology
If the consider sets that are union of manifolds of dimension 1 to d of
this kind
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Second order

In fact result are simpler (and stronger) in term of the density pM(x) of
the maximum. Bound for the distribution are obtained by integration.

Theorem

pM(x) ≤ p̂M(x) :=
1
2

[pM(x) + pEC
M (x)]with

pM(x) :=

∫
S

E
(
| det(X′′(t))|/X(t) = x,X′(t) = 0

)
pX(t),X′j (t)(x, 0)dt+boundary terms

and

pEC
M (x) := (−1)d

∫
S

E
(

det(X′′(t))/X(t) = x,X′(t) = 0
)
pX(t),X′j (t)(x, 0)dt+boundary terms
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Quantity pEC
M (x) is easy to compute using the work by Adler and

properties of symmetry of the order 4 tensor of variance of X′′ ( under
the conditional distribution) )

Lemma

E
(

det(X′′(t))/X(t) = x,X′(t) = 0
)

= det(Λ)Hd(x)

where Hd(x) is the dth Hermite polynomial and Λ := Var(X′(t))

main advantage of Euler characteristic method lies in this result.
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Second order

computation of pm

The key point is the following
If X is stationary and isotropic with covariance ρ(‖t‖2) normalized by
Var(X(t)) = 1 et Var(X′(t)) = Id
Then under the condition X(t) = x,X′(t) = 0

X′′(t) =
√

8ρ”G + ξ
√
ρ”− ρ′2Id + xId

Where G is a GOE matrix (Gaussian Orthogonal Ensemble), and ξ a
standard normal independent variable. We use recent result on the
the characteristic polynomials of the GOE. Fyodorov(2004)
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Theorem
Assume that the random field X is centered, Gaussian, stationary
and isotrpic and is “regular” Let S have polyhedral shape. Then,

p(x) = ϕ(x)

∑
t∈S0

σ̂0(t) +

d0∑
j=1

[( |ρ′|
π

)j/2
Hj(x) + Rj(x)

]
gj

 (1)

I gj =
∫

Sj
θ̂j(t)σj(dt), σ̂j(t) is the normalized solid angle of the cone

of the extended outward directions at t in the normal space with
the convention σd(t) = 1.
For convex or other usual polyhedra σ̂j(t) is constant on faces of
Sj,

I Hj is the j th(probabilistic) Hermite polynomial.
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Second order

Theorem (continued)

I Rj(x) =
( 2ρ′′

π|ρ′|
) j

2
Γ((j+1)/2

π

∫ +∞
−∞ Tj(v) exp

(
− y2

2

)
dy

v := −(2)−1/2((1− γ2)1/2y− γx
)

with γ := |ρ′|(ρ′′)−1/2, (2)

Tj(v) :=

[ j−1∑
k=0

H2
k (v)

2kk!

]
e−v2/2 −

Hj(v)

2j(j− 1)!
Ij−1(v), (3)

In(v) = 2e−v2/2
[ n−1

2 ]∑
k=0

2k (n− 1)!!

(n− 1− 2k)!!
Hn−1−2k(v) (4)

+ 1I{n even} 2
n
2 (n− 1)!!

√
2π(1− Φ(x))
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Second order

Second order study

Using an exact implicit formula

Theorem
Under conditions above + Var(X(t)) ≡ 1 Then

limx→+∞ − 2
x2 log

[
p̂M(x) − pM(x)

]
≥ 1 + inf

t∈S

1
σ2

t + λ(t)κ2
t

σ2
t := sup

s∈S\{t}

Var
(
X(s)

∣∣X(t),X′(t)
)

(1− r(s, t))2

and κt is some geometrical characteristic et Λt = GEV(Λ(t))

The right hand side is finite and > 1
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In some applications we consider a Gaussian stationary process
defined on a fractal set. For example the level set of some fractal
function.
It is direct consequence of the results above that if X(t) is normalized
(centred, var =1) and with differentiable paths :

P{M > u} ' ud−1φ(u)

for a parameter set S with integer dimension d.
What happens if the dimension d is fractal ? ? ?
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The answer is positive if the set is Minkowsky measurable.
Let Sε is the tube of size ε around S, we ask that

λ(Sε) ' Cεn−d.

λ is the Lebesgue measure, n the dimension of the ambient space, C
is called the Minkowski content.
The proof is based on the fact that for a large level u and except with
a negligible probability, in a neighborhood of the set S

I there is only one connected component above u.
I There is only one local maxima above u
I The connected component is almost a ball with center the

maxima (and random radius r )
I Roughly speaking, the maximum on S is large than u if the

maximum belongs to Sr.
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