Copulas ? What copulas ?

R. Chicheportiche \& J.P. Bouchaud, CFM

Multivariate linear correlations

- Standard tool in risk management/portfolio optimisation: the covariance matrix $R_{i j}=\left\langle r_{i} r_{j}\right\rangle$
- Find the portfolio with maximum expected return for a given risk or equivalently, minimum risk for a given return (G)
- In matrix notation:

$$
\mathbf{w}=\mathcal{G} \frac{\mathbf{R}^{-1} \mathbf{g}}{\mathbf{g}^{T} \mathbf{R}^{-1} \mathrm{~g}}
$$

where all gains are measured with respect to the risk-free rate and $\sigma_{i}=1$ (absorbed in g_{i}).

- More explicitely:

$$
\mathbf{w} \propto \sum_{\alpha} \lambda_{\alpha}^{-1}\left(\Psi_{\alpha} \cdot \mathbf{g}\right) \Psi_{\alpha}=\mathrm{g}+\sum_{\alpha}\left(\lambda_{\alpha}^{-1}-1\right)\left(\Psi_{\alpha} \cdot \mathbf{g}\right) \Psi_{\alpha}
$$

Multivariate non-linear correlations

- Many situations in finance in fact require knowledge of higher order correlations
- Gamma-risk of option portfolios: $\left\langle r_{i}^{2} r_{j}^{2}\right\rangle-\left\langle r_{i}^{2}\right\rangle\left\langle r_{j}^{2}\right\rangle$
- Stress test of complex porfolios: correlations in extreme market conditions
- Correlated default probabilities - Credit Derivatives (CDOs, basket of CDSs)
"The Formula That Killed Wall Street" (Felix Salmon)

Different correlation coefficients

- Correlation coefficient: $\rho_{i j}=\operatorname{cov}\left(r_{i}, r_{j}\right) / \sqrt{V\left(r_{i}\right) V\left(r_{j}\right)}$
- Correlation of squares or absolute values:

$$
\rho_{i j}^{(2)}=\frac{\operatorname{cov}\left(r_{i}^{2}, r_{j}^{2}\right)}{\sqrt{V\left(r_{i}^{2}\right) V\left(r_{j}^{2}\right)}} \quad \rho_{i j}^{(a)}=\frac{\operatorname{cov}\left(\left|r_{i}\right|,\left|r_{j}\right|\right)}{\sqrt{V\left(\left|r_{i}\right|\right) V\left(\left|r_{j}\right|\right)}}
$$

- Tail correlation:

$$
\tau_{i j}^{U U}(p)=\frac{1}{p} \text { Prob. }\left[r_{i}>\mathcal{P}_{>, i}^{-1}(p) \bigcap r_{j}>\mathcal{P}_{>, j}^{-1}(p)\right]
$$

(Similar defs. for $\tau^{L L}, \tau^{U L}, \tau^{L U}$)

Copulas

- Sklar's theorem: any multivariate distribution can be "factorized" into
- its marginals $\mathcal{P}_{i} \rightarrow u_{i}=\mathcal{P}_{i}\left(r_{i}\right)$ are $U[0,1]$
- a "copula", that describes the correlation structure between $N U[0,1]$ standardized random variables: $c\left(u_{1}, u_{2}, \ldots u_{N}\right)$
- All correlations, linear and non linear, can be computed from the copula and the marginals
- For bivariate distributions:

$$
C_{i j}(u, v)=\mathbb{P}\left[\mathcal{P}_{<, i}\left(X_{i}\right) \leq u \text { and } \mathcal{P}_{<, j}\left(X_{j}\right) \leq v\right]
$$

Copulas - Examples

- Examples: $(N=2)$
- The Gaussian copula: r_{1}, r_{2} bivariate Gaussian \rightarrow defines the Gaussian copula $c_{G}(u, v \mid \rho)$
- The Student copula: r_{1}, r_{2} bivariate Student with tail $\nu \rightarrow$ defines the Student copula $c_{S}(u, v \mid \rho, \nu)$
- Archimedean copulas: $\phi(u):[0,1] \rightarrow[0,1], \phi(1)=0$, ϕ^{-1} decreasing, completely monotone

$$
C_{A}(u, v)=\phi^{-1}[\phi(u)+\phi(v)]
$$

Ex: Frank copulas, $\phi(u)=\ln \left[e^{\theta}-1\right]-\ln \left[e^{\theta u}-1\right]$; Gumbel copulas, $\phi(u)=(-\ln u)^{\theta}, \theta<1$.

The Copula red-herring

- Sklar's theorem: a nearly empty shell - almost any $c\left(u_{1}, u_{2}, \ldots u_{N}\right)$ with required properties is allowed.
- The usual financial mathematics syndrom: choose a class of copulas - sometimes absurd - with convenient mathematical properties and brute force calibrate to data
- If something fits it can't be bad (??) Statistical tests are not enough - intuition \& plausible interpretation are required
- But he does not wear any clothes! - see related comments by Thomas Mikosch

The Copula red-herring

- Example 1: why on earth choose the Gaussian copula to describe correlation between (positive) default times???
- Example 2: Archimedean copulas: take two $U[0,1]$ random variables s, w. Set $t=K^{-1}(w)$ with $K(t)=t-$ $\phi(t) / \phi^{\prime}(t)$.

$$
u=\phi^{-1}[s \phi(t)] ; \quad v=\phi^{-1}[(1-s) \phi(t)] ; \quad \longrightarrow r_{1}, r_{2}
$$

Financial interpretation ???

- Models should reflect some plausible underlying structure or mechanism

Copulas ? What copulas ?

- Aim of this work
- Develop intuition around copulas
- Identify empirical stylized facts about multivariate correlations that copulas should reproduce
- Discuss "self-copulas" as a tool to study empirical temporal dependences
- Propose an intuitively motivated, versatile model to generate a wide class of non-linear correlations

Copulas

- Restricted information on copula: diagonal $C(p, p)$ and anti-diagonal $C(p, 1-p)$. Note: $C\left(\frac{1}{2}, \frac{1}{2}\right)$ is the probability that both variables are simultaneously below their medians
- Tail dependence:

$$
\tau^{U U}(p)=\frac{1-2 p+C(p, p)}{1-p}, \quad \text { etc. }
$$

- Relative difference with respect to independence or to Gaussian:

$$
\frac{C(p, p)-p^{2}}{p(1-p)}=\tau^{U U}(p)+\tau^{L L}(1-p)-1, \quad \text { or } \quad \frac{C(p, p)-C_{G}(p, p)}{p(1-p)}
$$

Copulas

Student Copulas

- Intuition: $r_{1}=\sigma \epsilon_{1}, r_{2}=\sigma \epsilon_{2}$ with:
- $\epsilon_{1,2}$ bivariate Gaussian with correlation ρ
- σ is a common random volatility with distribution $P(\sigma)=\mathcal{N} e^{-\sigma_{0}^{2} / \sigma^{2}} / \sigma^{1+\nu}$
- The monovariate distributions of $r_{1,2}$ are Student with a power law tail exponent $\nu(\in[3,5]$ for daily data)
- The multivariate Student is a model of correlated Gaussian variables with a common random volatility:

$$
r_{i}=\sigma \epsilon_{i} \quad \rho_{i j}=\operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)
$$

Student Copulas

- In this model, all higher-order correlations can be expressed in terms of ρ
- Explicit formulas: $\left(f_{n}=\left\langle\sigma^{2 n}\right\rangle /\left\langle\sigma^{n}\right\rangle^{2}\right)$

$$
\rho^{(2)}=\frac{f_{2}\left(1+2 \rho^{2}\right)-1}{3 f_{2}-1} ; \quad \rho^{a}=\frac{f_{1}\left(\sqrt{1-\rho^{2}}+\rho \arcsin \rho\right)-1}{\frac{\pi}{2} f_{1}-1}
$$

- The tail correlations τ have a finite limit when $p \rightarrow 0$ because of the common volatility
- The central point of the copula:

$$
C\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{4}+\frac{1}{2 \pi} \arcsin \rho
$$

Student Copulas

Student Copulas

$\rho=0.3$ - Note: corrections are of order $(1-p)^{2 / \nu}$

Elliptic Copulas

- A straight-forward generalisation: elliptic copulas $r_{1}=\sigma \epsilon_{1}, r_{2}=\sigma \epsilon_{2}, P(\sigma)$ arbitrary
- The above formulas remain valid for arbitrary $P(\sigma)$ in particular:

$$
C\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{4}+\frac{1}{2 \pi} \arcsin \rho
$$

- The tail correlations τ have a finite limit whenever $P(\sigma)$ decays as a power-law
- A relevant example: the log-normal model $\sigma=\sigma_{0} e^{\xi}, \xi=$ $N\left(0, \lambda^{2}\right)$ - very similar to Student with $\nu \sim \lambda^{-2 *}$
*Although the true asymptotic value of $\tau(p=0)$ is zero.

Student Copulas and empirical data

- The empirical curves $\rho^{a}(\rho)$ or $\rho^{(2)}(\rho)$ cross the set of Student predictions, as if "more Gaussian" for small ρ 's
- Same with tail correlation coefficients (+ some level of assymetry)
- $C\left(\frac{1}{2}, \frac{1}{2}\right)$ systematically different from Elliptic prediction $=\frac{1}{4}+\frac{1}{2 \pi} \arcsin \rho-$ in particular $C\left(\frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \rho=0\right)>\frac{1}{4}$
- $C(p, p)-C_{G}(p, p)$ incompatible with a Student model: concave for $\rho<0.25$ becoming convex for $\rho>0.25$
- To be sure: Archimedean copulas are even worse !

Absolute correlation

2005-2009

Tail correlation

2005-2009

Tail correlation: time series

Centre point vs ρ

Difference between empirical results and Student (Frank) prediction for $C\left(\frac{1}{2}, \frac{1}{2}\right)$

Diagonal

Student Copulas: Conclusion

- Student (or even elliptic) copulas are not sufficient to describe the multivariate distribution of stocks!
- Obvious intuitive reason: one expects more than one volatility factor to affect stocks
- How to describe an entangled correlation between returns and volatilities?
- In particular, any model such that $r_{i}=\sigma_{i} \epsilon_{i}$ with correlated random σ 's leads to $C\left(\frac{1}{2}, \frac{1}{2}\right) \equiv \frac{1}{4}$ for $\rho=0$!

Constructing a realistic copula model

- How do we go about now (for stocks) ?
- a) stocks are sensitive to "factors"
- b) factors are hierarchical, in the sense that the vol of the market influences that of sectors, which in turn influence that of more idiosyncratic factors
- Empirical fact: within a one-factor model,

$$
r_{i}=\beta_{i} \varepsilon_{0}+\varepsilon_{i}
$$

volatility of residuals increases with that of the market ε_{0}

"Entangled" volatilities

with Romain Allez

Constructing a realistic copula model

- An entangled one-factor model

$$
r_{i}=\beta_{i} \sigma_{0} e^{\xi_{0}} \varepsilon_{0}+\sigma_{1} e^{\alpha \xi_{0}+\xi_{i}} \varepsilon_{i}
$$

with $\xi_{0} \sim N\left(0, s_{0}^{2}\right), \xi_{i} \sim N\left(0, s_{1}^{2}\right)$, IID,

- The volatility of the idiosyncratic factor is clearly affected by that of the market mode
- Kurtosis of the market factor and of the idiosyncratic factor:

$$
\kappa_{0}=e^{4 s_{0}^{2}}\left[e^{4 s_{0}^{2}}-1\right] ; \quad \kappa_{1}=e^{4\left(\alpha^{2} s_{0}^{2}+s_{1}^{2}\right)}\left[e^{4\left(\alpha^{2} s_{0}^{2}+s_{1}^{2}\right)}-1\right]
$$

Constructing a realistic copula model

- An interesting remark: take two stocks with opposite exposure to the second factor

$$
r_{ \pm}=\sigma_{0} e^{\xi_{0}} \varepsilon_{0} \pm \sigma_{1} e^{\alpha \xi_{0}+\xi_{1}} \varepsilon_{1}
$$

- Choose parameters such that volatilities are equal

$$
\sigma_{0} e^{s_{0}^{2}}=\sigma_{1} e^{\alpha^{2} s_{0}^{2}+s_{1}^{2}}
$$

such that $\operatorname{cov}\left(r_{+}, r_{-}\right)=0$

- Then:

$$
C\left(\frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \rho=0\right) \approx \frac{1}{4}\left(1+\frac{\kappa_{1}-\kappa_{0}}{6 \pi}\right)
$$

A hierachical tree model

- Construct a tree such that the trunk is the market factor, and each link is a factor with entangled vol.
- The return of stock i is constructed by following a path \mathcal{C}_{i} along the tree from trunk to leaves

$$
r_{i}=\int_{\mathcal{C}_{i}, q \in[0,1]} \beta_{i}(q) \sigma(q) \mathrm{d} \varepsilon(q) \times \exp \left[\int_{\mathcal{C}_{i}, q^{\prime} \in[0, q]} \alpha\left(q, q^{\prime}\right) \mathrm{d} \xi\left(q^{\prime}\right)\right]
$$

- Parameters: Branching ratio of the tree $b(q)$, volatility function $\sigma(q)$, intrication function $\alpha\left(q, q^{\prime}\right)$

A hierachical tree model

A hierachical tree model

- Calibration on data: work in progress...
- Find simple, systematic ways to calibrate such a huge model \Rightarrow stability of $R_{i j}$??
- Preliminary simulation results for reasonable choices: the model is able to reproduce all the empirical facts reported above, including $C(1 / 2,1 / 2)>1 / 4$ and the change of concavity of

$$
\frac{C(p, p)-C_{G}(p, p)}{p(1-p)}
$$

as ρ increases

Self-copulas

- One can also define the copula between a variable and itself, lagged:

$$
C_{\tau}(u, v)=\mathbb{P}\left[\mathcal{P}_{<}\left(X_{t}\right) \leq u \text { and } \mathcal{P}_{<, j}\left(X_{t+\tau}\right) \leq v\right]
$$

- Example: log-normal copula

$$
X_{t}=e^{\omega_{t}} \xi_{t}
$$

with correlations between ξ 's (linear), ω 's (vol) and $\omega \xi$ (leverage)

- In the limit of weak correlations:

$$
C_{t}(u, v)-u v \approx \rho R(u, v)+\alpha A(u, v)-\beta B(u, v)
$$

Three corrections to independence

ρ, α, β

Empirical self copulas

Long range (multifractal) memory

Self-copulas

- A direct application: GoF tests (Kolmogorov-Smirnov/Cramervon Mises) for dependent variables
- The relevant quantity is $\sum_{t}\left(C_{t}(u, v)+C_{-t}(u, v)-2 u v\right)$
- The test is dependent on the self-copula
- \Rightarrow Significant decrease of the effective number of independent variables

Conclusion - Open problems

- GoF tests for two-dimensional copulas: max of "Brownian sheets" (some progress with Rémy)
- Structural model: requires analytical progress (possible thanks to the tree structure) and numerical simulations
- Extension to account for U/L asymmetry
- Extension to describe defaults and time to defaults - move away from silly models and introduce some underlying structure

