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Diffusing Predators Hunting a Diffusing Prey

Basic 
question:

What is the survival probability of a diffusing 
prey that is hunted by diffusing predators?

Outline: • 1 & 2 predators  exactly soluble

• 3 predators  accurate exponent by electrostatics 

• N =! predators   S(t) ! exp[-" ln!(t)]

• simple argument for iterated logarithm law

Fact: one dimension most interesting SN (t) ∼ t
−βN

• N " 1 predators #  ! "ln N
N

• survival in wedges, cones, paraboloids

16th Itzykson Meeting, Saclay,  Jun 14-17, 2011
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 Dimension Dependence

d=2:  hunt successful, but hunters still essentially independent

→ SN (t) ∼ [S1(t)]
N

d=1:  successful hunt SN (t) ∼ t−βN

• surrounded prey:  adding hunters is efficient $βN ∼ N

• chased prey:  adding hunters is inefficient $ slow decay
βN sublinear in N

d>2:  hunt unsuccessful; the prey may survive forever
Polya (1921), Bramson & Griffeath (1991)

effective correlation between hunters
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One Diffusing Hunter, One Stationary Prey

S1 ∼ t−β1 with β1 =
1

2

S1(t) = erf

�

x0
√

4Dt

�

∼
x0

√
πDt

as t → ∞

survival probability; integrate over all x:

p(x, t) =
1

√

4πDt

�

e−(x−x0)
2/4Dt

− e−(x+x0)
2/4Dt

�

probability distribution of the prey-hunter separation:

x% # initial separation of hunter and prey
x  # current separation of hunter and prey
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One Diffusing Hunter,  One Diffusing Prey

p(y1, y2, t) =
1

4πt

�

e−[y2

1
+(y2−

√

D�)
2]/4t

− e−[(y1−

√

D� sin 2θ)2+(y2+
√

D� cos 2θ)2]/4t
�

x1 x2<

y
2

!

=y DL
y Dl2

y

1

1

x2 = x1 or

θ = tan−1

�

DL

D�

y1 = x1/
√

DL

y2 = x2/
√

D�

map to isotropic 2d diffusion
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p(x�, t) =
1

√

16πD�t

�

e−(x�−1)2/4D�t erfc

�

−

x� cot θ
√

4D�t

�

− e−(x�+cos 2θ)2/4D�t erfc

�

sin 2θ − x� cot θ
√

4D�t

�

�

5 10 15 20

x

0.02

0.04

0.06

0.08

0

0.10

0.00

p
(x

l ,
 t 

=
 1

0
)

Prey Probability Distribution

quickly diffusing lamb is 
more likely to survive

1

r =
D�

DL
= 0.1

10

Friday, June 24, 2011



Two Diffusing Hunters, One Diffusing Prey

x1 x2 x3

require  x& < x' and x( < x'

map to 3d diffusion
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Two Diffusing Hunters, One Diffusing Prey

x1 x2 x3

require  x& < x' and x( < x'

map to 3d diffusion

x

x

2
x=x x

1 3

1

3
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Two Diffusing Hunters, One Diffusing Prey

x1 x2 x3

require  x& < x' and x( < x'

x

x

2
x=x x

1 3

1

3
map to 3d diffusion
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Two Diffusing Hunters, One Diffusing Prey

2 3
x x

3
x

2
x=x x

1 3

1

=

x

x1 x2 x3

require  x& < x' and x( < x'

map to 3d diffusion
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Two Diffusing Hunters, One Diffusing Prey

2 3
x x

3
x

2
x=x x

1 3

1
x

=
!

x1 x2 x3

require  x& < x' and x( < x'

map to 3d diffusion
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Equivalence to Diffusion in  Absorbing Wedge

2 3
x x

3
x

2
x=x x

1 3

1
x

=
!

x1 =x2

(1,1,1)
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Equivalence to Diffusion in  Absorbing Wedge

Θ

view perpendicular to (1,1,1)

23

13

12

=
2π

3
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Diffusion in  Absorbing Wedge

!

equivalent to injecting 
diffusing particles at 
fixed rate

electrostatic 
equivalence

φ(r) ∼ r
−π/Θ

∼ t
1−π/2Θ

N(t) ∼

� Θ

0

dθ

� √

Dt

0

φ(r) r dr

∼

� √

Dt

0

r
1−π/Θ

dr

number of 
particles within
wedge

S(t) ∼ t−π/2Θ

Carslaw & Jaeger (1959)
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Equivalence to Diffusion in  Absorbing Wedge

Θ =
2π

3

S2(t) ∼ t−3/4 chased prey

lions lamb

23

13

12
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Systematics of the Equivalence

23

13

12

123

321

132213

231 312
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Systematics of the Equivalence

23

13

12

123

321

132213

231 312

t−3/10no reversal,  123 ’ 321
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23

13

12

123

321

132213

231 312

no reversal,  123 ’ 321 t−3/10

3 never trails,  123 ’ 321, 312 t−3/8

Systematics of the Equivalence
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23

13

12

123

321

132213

231 312

no reversal,  123 ’ 321 t−3/10

3 always leads 1 t−3/6

Systematics of the Equivalence

3 never trails,  123 ’ 321, 312 t−3/8
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23

13

12

123

321

132213

231 312

no reversal,  123 ’ 321 t−3/10

Systematics of the Equivalence

3 never trails,  123 ’ 321, 312 t−3/8

3 always leads 1 t−3/6

3 always leads 1 & 2 t−3/4

Friday, June 24, 2011



23

13

12

123

321

132213

231 312

no reversal,  123 ’ 321 t−3/10

order preserved t
−3/2

Systematics of the Equivalence

3 never trails,  123 ’ 321, 312 t−3/8

3 always leads 1 t−3/6

t−3/43 always leads 1 & 2
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Three Diffusing Hunters, One Diffusing Prey

require   x( < x),  x& < x),  x' < x)

x1 x2 x3 x4

projection of 4-space onto 3d hyperplane $ to (1,1,1,1)

construction by 
D. ben-Avraham

each plane represents 
xi = xj

each Weyl chamber 
represents one specific 
ordering; for vicious 
random walks 
x(<x&<x'<x)
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Three Diffusing Hunters, One Diffusing Prey

x1 x2 x3 x4

Weyl chamber for 
lamb survival:
x(, x&, x' < x)

require   x( < x),  x& < x),  x' < x)

each plane represents 
xi = xj

projection of 4-space onto 3d hyperplane $ to (1,1,1,1)

construction by 
D. ben-Avraham
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Three Diffusing Hunters, One Diffusing Prey

x1 x2 x3 x4

require   x( < x),  x& < x),  x' < x)

β = 1

2
(µ − N + 2)

electrostatics ↔ diffusion

→ β3 = 0.91342 ± 0.00008

potential in Weyl chamber: φ(r) ∼ r−µ
µ = 2.82684 ± 0.00016

(ben-Avraham et al. 2003)

0.913 ± 0.005 simulation
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time

x

lions

lamb

Many Diffusing Hunters, One Diffusing Prey
Krapivsky & SR (96, 99)

Friday, June 24, 2011



time

x

lions

lamb

Many Diffusing Hunters, One Diffusing Prey
Krapivsky & SR (96, 99)
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Many Diffusing Hunters, One Diffusing Prey

time

x

lions

lamb

xlast

Krapivsky & SR (96, 99)
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Many Diffusing Hunters, One Diffusing Prey
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x     becomes deterministic for large Nlast 

Krapivsky & SR (96, 99)
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Many Diffusing Hunters, One Diffusing Prey

�
∞

xlast

N
√

4πDt
e
−x2/4Dt

dx = 1

xlast(t) ∼
�

(4D lnN) t ≡

�

AN t N"1 lions

extremal criterion for x    :
last

xlast(t) ∼
�

2D ln(c2
0
Dt) t N=! lions

only are dangerousN ∼c0

√
Dt

constant density for x<0

Krapivsky & SR (96, 99)
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Effective Problem: 
Deterministic Deathline

xlast(t) ∼
�

(4D lnN) t ≡

�

AN t

xlast(t) ∼
�

2D ln(c2
0
Dt) t

Many Diffusing Hunters, One Diffusing Prey

x
last

lamb

time

deathline

x

Krapivsky & SR (96, 99)
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Effective Problem: 
Deterministic Deathline

xlast(t) ∼
�

(4D lnN) t ≡

�

AN t

xlast(t) ∼
�

2D ln(c2
0
Dt) t

Many Diffusing Hunters, One Diffusing Prey

p(x, t) ∼ t−βN−1/2 F (ξ) ξ = x/xlastscaling ansatz:

D

AN

d2F

dξ2
+

ξ

2

dF

dξ
+

�

βN +
1

2

�

F = 0

→
∂p(x, t)

∂t
−

xlast

2t

∂p(x, t)

∂x
= D

∂2p(x, t)

∂x2
(0 ≤ x < ∞)

lamb probability distribution:

Krapivsky & SR (96, 99)

Friday, June 24, 2011



convert to Schrödinger equation:

2βN + 1

2
� η2/4lowest energy eigenvalue 

determined by the criterion:
βN � AN/16D

d
2
D2βN

dη2
+

�

2βN + 1
2 −

1
4η2

�

D2βN
= 0

subject to D2βN
(η) = 0

η = ∞

η =
�

AN/2D

F (ξ) = e−η2/4
D(η)define: η = ξ

�

AN/2D

S∞(t) ∼ exp
�

−
1

8
ln2 t

�

βN �











1

4
lnN N finite

1

8
ln t N = ∞

Summary
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Khintchine Iterated Logarithm Law

L(t)

x

time

lamb

Khintchine (1924), Feller (1968), SR (01)

what is L(t) so that 
the lamb “survives”?

if L(t) > t1/2, S∞ > 0 lamb survives

c(x, t) = S(t)
√

4πDt
e−x2/4Dt“free” approximation:

∂S
∂t = −2D

∂c
∂x

�

�

x=L
= −

�

L2

4πDt e−L2/4Dt S
t
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Khintchine Iterated Logarithm Law

if A=const., 
even if A " 1 
$ lamb dies

if L =
�

4Dt f(t) lnS(t) = −

� t

0

�

f(t�)

π

e−f(t�) dt�

t�

= −

� ln t

0

�

f(x)

π

e−f(x) dx

when L =
√

4Dt ln ln t → S(t) ∼ 1
ln t

ultimately L(t) ∼
�

4Dt(ln ln t+ 3
2 ln ln ln t+. . .) → S(t) ∼ 1

ln ln ln... ln t

(and A � 1)
if L =

√
At lnS(t) = −

� t

0

β
dt�

t�
β =

�

A

4πD
e−A/4D

marginal case λ = 1for f(x) = λ lnx, → lnS ∼ −

�
ln t dx

xλ

Khintchine (1924), Feller (1968), SR (01)

∂S
∂t = −2D

∂c
∂x

�

�

x=L
= −

�

L2

4πDt e−L2/4Dt S
t
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Khintchine Iterated Logarithm Law

if L =
�

4Dt f(t) lnS(t) = −

� t

0

�

f(t�)

π

e−f(t�) dt�

t�

= −

� ln t

0

�

f(x)

π

e−f(x) dx

when L =
√

4Dt ln ln t → S(t) ∼ 1
ln t

ultimately L(t) ∼
�

4Dt(ln ln t+ 3
2 ln ln ln t+. . .) → S(t) ∼ 1

ln ln ln... ln t

(and A � 1)
if L =

√
At lnS(t) = −

� t

0

β
dt�

t�
β =

�

A

4πD
e−A/4D

marginal case λ = 1for f(x) = λ lnx, → lnS ∼ −

�
ln t dx

xλ

Khintchine (1924), Feller (1968), SR (01)

∂S
∂t = −2D

∂c
∂x

�

�

x=L
= −

�

L2

4πDt e−L2/4Dt S
t

if A=const., 
even if A " 1 
$ lamb dies
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 Survival in Wedges

S(t) ∼ t−π/2Θ

!
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 Survival in Wedges, Cones

!
S(t) ∼ t−β(Θ,d)

Ben-Naim and Krapivsky (2010)
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 Survival in Wedges, Cones

!
S(t) ∼ t−β(Θ,d)

Ben-Naim and Krapivsky (2010)

d=2

!
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 Survival in Wedges, Cones, and Paraboloids

x

y

y=a|x|b Bañuelos et al (2001)
Lifshitz and Shi (2002)
KR (2010)
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Bañuelos et al (2001)
Lifshitz and Shi (2002)
KR (2010)

y

x y=ax
2

 Survival in Wedges, Cones, and Paraboloids
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Bañuelos et al (2001)
Lifshitz and Shi (2002)
KR (2010)

y=ax
2

y

x

prob. to remain within |x| and exit via right edge:

e
−π

2Dt/(2x)2
× e

−y2/4Dt

optimize over y:

S(t) <

�
∞

0

e−π2Dt/(2x)2
× e−y2/4Dt dy

< exp
�

−
3
4

�

aπ
2

2

�2/3
(Dt)1/3

�

≡ exp[−At1/3]

A =
3

8
π

4/3 Aexact =
3

8
π

2

 Survival in Wedges, Cones, and Paraboloids

survival criterion:
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generalized paraboloid in d dimensions:

y = a

�
�

x2
1

+ . . . + x2

d−1

�p

p > 1

the same approach as d=2 gives:

S < exp





−

p + 1

4

�

4j2
(d−3)/2 a2/p

p

�

p

p+1

(Dt)
p−1

p+1





 Survival in Wedges, Cones, and Paraboloids
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Hitting Times in Wedges, Cones, and Paraboloids

T ≡ �t(�r)� =
�

�r �

p�r→�r � [t(�r �) + δt]backward equation:

D∇
2
T = −1 T |boundary = 0continuum limit:

T =

�
∞

0

t F (t) dt = −

�
∞

0

t
∂S

∂t
dt

=

�
∞

0

S(t) dt

relation to 
survival probability:
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Hitting Times in Wedges, Cones, and Paraboloids

if Θ ≥
π
2
, then T ∼ r

π/Θ
R

2−π/Θ

Θc =

�

π/2 d = 2

2 cos−1(1/
√

3) ≈ 109.47 d = 3

infinite wedge: if S(t) decays faster than t−1, then T < ∞

T = 1

2D (y − x2)parabola:

T (r, θ) =
r2

4D

�

cos 2θ

cos Θ
− 1

�

+
∞
�

n=0

Anrλn cos(λnθ)
λn = (2n + 1) π

Θ

An =
(−1)n+1 4R2−λn

DΘλn(λ2
n − 4)

pie wedge: !

R

divergent for 
Θ > π/2
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The Closest Particle

L
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L

warm-up: 1d

c(x,t)

x

The Closest Particle

closest particle criterion:
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L

warm-up: 1d

c(x,t)

x

The Closest Particle

closest particle criterion:
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The Closest Particle

L

corner

plane

needle

crack
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Some Concluding Remarks

• particle capture problems most interesting in 1d

• 3-particle problems well understood:

• several-particle problems partially understood:

no reversal,  123 ’ 321 t−3/10

3 never trails,  123 ’ 321, 312 t−3/8

3 always leads 1 t−3/6

3 always leads 1 & 2 t−3/4

order preserved t
−3/2

Weyl chamber
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Some Concluding Remarks

• particle capture problems most interesting in 1d

• 3-particle problems well understood:

• several-particle problems partially understood:
accurate but uncontrolled approximation 
for survival probability

• N$! approximation simple, powerful;
      cheap “derivation” of iterated logarithm law

Weyl chamber

replace by 
equal-area cone

Ben-Naim & 
Krapivsky (2010)

no reversal,  123 ’ 321 t−3/10

3 never trails,  123 ’ 321, 312 t−3/8

3 always leads 1 t−3/6

3 always leads 1 & 2 t−3/4

order preserved t
−3/2

Friday, June 24, 2011



Crass Commercialism

1.  Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation

6. Fragmentation
7.  Adsorption 
8. Spin Dynamics
9. Coarsening
10. Disorder

11. Hysteresis
12. Population Dynamics
13. Diffusion Reactions
14. Complex Networks
      > 200 problems

published 
Dec. 2010

TABLE OF CONTENTS

Aimed at graduate students, this book explores some of the core

phenomena in non-equilibrium statistical physics. It focuses on the

development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation, and adsorption, where basic

phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, by developing both a

discrete and a continuum formulation, the role of disorder in 

non-equilibrium processes, and hysteresis from the non-equilibrium

perspective. The concluding chapters address population dynamics,

chemical reactions, and a kinetic perspective on complex networks.

The book contains more than 200 exercises to test students'

understanding of the subject. A link to a website hosted by the

authors, containing an up-to-date list of errata and solutions to

some of the exercises, can be found at

www.cambridge.org/9780521851039.
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Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially

stationary hard-sphere gas in two dimensions due to a single incident particle.

Shown are the cloud of moving particles (red) and the stationary particles (blue)

that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
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