Diffusing Predators Hunting a Diffusing Prey

 16th Itzykson Meeting, Saclay, Jun 14-I7, 201 ISid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, D. ben-Avraham, B.M. Johnson, C.A. Monaco

Basic What is the survival probability of a diffusing question: prey that is hunted by diffusing predators?

Fact: one dimension most interesting $S_{N}(t) \sim t^{-\beta_{N}}$
Outline:

- I \& 2 predators exactly soluble
- 3 predators accurate exponent by electrostatics
- $\mathrm{N} \gg \mid$ predators $\beta_{N} \simeq 1 / \ln N$
- $\mathrm{N}=\infty$ predators $S(t) \simeq \exp \left[-1 / 8 \ln ^{2}(t)\right]$
- simple argument for iterated logarithm law
- survival in wedges, cones, paraboloids

Dimension Dependence

$d>2$: hunt unsuccessful; the prey may survive forever
Polya (I92I), Bramson \& Griffeath (I99I)
$\mathrm{d}=2$: hunt successful, but hunters still essentially independent

$$
\rightarrow S_{N}(t) \sim\left[S_{1}(t)\right]^{N}
$$

$\mathrm{d}=\mathrm{I}:$ successful hunt $\quad S_{N}(t) \sim t^{-\beta_{N}}$

- surrounded prey: adding hunters is efficient $\rightarrow \beta_{N} \sim N$
- chased prey: adding hunters is inefficient \rightarrow slow decay β_{N} sublinear in N
effective correlation between hunters

One Diffusing Hunter, One Stationary Prey

probability distribution of the prey-hunter separation:

$$
p(x, t)=\frac{1}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} / 4 D t}-e^{-\left(x+x_{0}\right)^{2} / 4 D t}\right]
$$

survival probability; integrate over all x :

$$
\begin{array}{r}
S_{1}(t)=\operatorname{erf}\left(\frac{x_{0}}{\sqrt{4 D t}}\right) \sim \frac{x_{0}}{\sqrt{\pi D t}} \quad \text { as } t \rightarrow \infty \\
S_{1} \sim t^{-\beta_{1}} \quad \text { with } \quad \beta_{1}=\frac{1}{2}
\end{array}
$$

One Diffusing Hunter, One Diffusing Prey

x_{1}

x_{2}
map to isotropic 2d diffusion

$$
\begin{aligned}
& y_{1}=x_{1} / \sqrt{D_{L}} \\
& y_{2}=x_{2} / \sqrt{D_{\ell}}
\end{aligned}
$$

$$
\theta=\tan ^{-1} \sqrt{\frac{D_{L}}{D_{\ell}}} \theta
$$

$$
p\left(y_{1}, y_{2}, t\right)=\frac{1}{4 \pi t}\left[e^{-\left[y_{1}^{2}+\left(y_{2}-\sqrt{D_{\ell}}\right)^{2}\right] / 4 t}\right.
$$

$$
\left.-e^{-\left[\left(y_{1}-\sqrt{D_{\ell}} \sin 2 \theta\right)^{2}+\left(y_{2}+\sqrt{D_{\ell}} \cos 2 \theta\right)^{2}\right] / 4 t}\right]
$$

Prey Probability Distribution

$$
p\left(x_{\ell}, t\right)=\frac{1}{\sqrt{16 \pi D_{\ell} t}}\left[e^{-\left(x_{\ell}-1\right)^{2} / 4 D_{\ell} t} \operatorname{erfc}\left(-\frac{x_{\ell} \cot \theta}{\sqrt{4 D_{\ell} t}}\right)\right.
$$

$$
\left.-e^{-\left(x_{\ell}+\cos 2 \theta\right)^{2} / 4 D_{\ell} t} \operatorname{erfc}\left(\frac{\sin 2 \theta-x_{\ell} \cot \theta}{\sqrt{4 D_{\ell} t}}\right)\right]
$$

Two Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}
require $\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\mathrm{x}_{1}<\mathrm{x}_{3}$
map to 3d diffusion

Two Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}
require $\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\mathrm{x}_{1}<\mathrm{x}_{3}$
map to 3d diffusion

Two Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}
require $\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\mathrm{x}_{1}<\mathrm{x}_{3}$
map to 3d diffusion

Two Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}
require $\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\mathrm{x}_{1}<\mathrm{x}_{3}$
map to 3d diffusion

Two Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}
require $\mathrm{x}_{2}<\mathrm{x}_{3}$ and $\mathrm{x}_{1}<\mathrm{x}_{3}$
map to 3d diffusion

Equivalence to Diffusion in Absorbing Wedge

Equivalence to Diffusion in Absorbing Wedge

 view perpendicular to (I, I, I)

Diffusion in Absorbing Wedge

$$
S(t) \sim t^{-\pi / 2 \Theta}
$$

Carslaw \& Jaeger (1959)
electrostatic equivalence

$$
\phi(r) \sim r^{-\pi / \Theta}
$$

equivalent to injecting diffusing particles at fixed rate
number of particles within wedge

$$
\begin{aligned}
N(t) & \sim \int_{0}^{\Theta} d \theta \int_{0}^{\sqrt{D t}} \phi(r) r d r \\
& \sim \int_{0}^{\sqrt{D t}} r^{1-\pi / \Theta} d r \\
& \sim t^{1-\pi / 2 \Theta}
\end{aligned}
$$

Equivalence to Diffusion in Absorbing Wedge

Systematics of the Equivalence

Systematics of the Equivalence

no reversal, $\quad 123 \nRightarrow 321$
$t^{-3 / 10}$

Systematics of the Equivalence

no reversal, $\quad 123 \nRightarrow 321$
$t^{-3 / 10}$
3 never trails, $123 \nRightarrow 32 I, 312 \quad t^{-3 / 8}$

Systematics of the Equivalence

no reversal, $\quad 123 \nRightarrow 321$
3 never trails, $123 \nRightarrow 321$, 312
3 always leads I
$t^{-3 / 10}$
$t^{-3 / 8}$
$t^{-3 / 6}$

Systematics of the Equivalence

no reversal, $\quad 123 \nRightarrow 321$
3 never trails, $123 \nRightarrow 321$, 312
3 always leads I
3 always leads I \& 2
$t^{-3 / 10}$
$t^{-3 / 8}$
$t^{-3 / 6}$
$t^{-3 / 4}$

Systematics of the Equivalence

no reversal, $123 \nRightarrow 32$ I
3 never trails, $123 \nRightarrow 321,312$
3 always leads I
3 always leads I \& 2
order preserved

$$
t^{-3 / 10}
$$

$$
t^{-3 / 8}
$$

$$
t^{-3 / 6}
$$

$$
t^{-3 / 4}
$$

$t^{-3 / 2}$

Three Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}

x_{4}
require $\mathrm{X}_{1}<\mathrm{x}_{4}, \mathrm{X}_{2}<\mathrm{x}_{4}, \mathrm{X}_{3}<\mathrm{x}_{4}$
projection of 4 -space onto 3 d hyperplane \perp to (I,I,I,I)
each plane represents

$$
x_{i}=x_{j}
$$

construction by
D. ben-Avraham
each Weyl chamber represents one specific ordering; for vicious random walks
$\mathrm{x}_{1}<\mathrm{x}_{2}<\mathrm{x}_{3}<\mathrm{x}_{4}$

Three Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}

x_{4}
require $\mathrm{X}_{1}<\mathrm{x}_{4}, \mathrm{X}_{2}<\mathrm{x}_{4}, \mathrm{X}_{3}<\mathrm{x}_{4}$
projection of 4 -space onto 3 d hyperplane \perp to (I,I,I,I)
each plane represents

$$
x_{i}=x_{j}
$$

construction by
D. ben-Avraham

Weyl chamber for lamb survival:

$$
x_{1}, x_{2}, x_{3}<x_{4}
$$

Three Diffusing Hunters, One Diffusing Prey

x_{1}

x_{2}

x_{3}

x_{4}
require $\mathrm{x}_{1}<\mathrm{x}_{4}, \mathrm{x}_{2}<\mathrm{x}_{4}, \mathrm{x}_{3}<\mathrm{x}_{4}$
potential in Weyl chamber: $\phi(r) \sim r^{-\mu} \quad \mu=\underset{\text { (ben-Avraham et al. 2003) }}{2.82684 \pm 0.00016}$
electrostatics \leftrightarrow diffusion
$\rightarrow \beta_{3}=0.91342 \pm 0.00008$
0.913 ± 0.005 simulation

Many Diffusing Hunters, One Diffusing Prey
Krapivsky \& SR $(96,99)$

Many Diffusing Hunters, One Diffusing Prey

Many Diffusing Hunters, One Diffusing Prey

Krapivsky \& SR $(96,99)$

Many Diffusing Hunters, One Diffusing Prey

Krapivsky \& SR $(96,99)$

Many Diffusing Hunters, One Diffusing Prey

extremal criterion for $x_{\text {last }}$:

$$
\int_{x_{\text {last }}}^{\infty} \frac{N}{\sqrt{4 \pi D t}} e^{-x^{2} / 4 D t} d x=1
$$

$$
x_{\text {last }}(t) \sim \sqrt{(4 D \ln N) t} \equiv \sqrt{A_{N} t} \quad \mathrm{~N} \gg \text { I lions }
$$

$$
x_{\text {last }}(t) \sim \sqrt{2 D \ln \left(c_{0}^{2} D t\right) t}
$$

$$
N=\infty \text { lions }
$$

constant density for $\mathrm{x}<0$ only $N \sim c_{0} \sqrt{D t}$ are dangerous

Many Diffusing Hunters, One Diffusing Prey

12

Effective Problem: Deterministic Deathline

$x_{\text {last }}(t) \sim \sqrt{2 D \ln \left(c_{0}^{2} D t\right) t}$
\mathbf{X}

Many Diffusing Hunters, One Diffusing Prey

Krapivsky \& SR $(96,99)$

Effective Problem:
Deterministic Deathline

$$
\begin{aligned}
& x_{\text {last }}(t) \sim \sqrt{(4 D \ln N) t} \equiv \sqrt{A_{N} t} \\
& x_{\text {last }}(t) \sim \sqrt{2 D \ln \left(c_{0}^{2} D t\right) t}
\end{aligned}
$$

lamb probability distribution:

$$
\frac{\partial p(x, t)}{\partial t}-\frac{x_{\text {last }}}{2 t} \frac{\partial p(x, t)}{\partial x}=D \frac{\partial^{2} p(x, t)}{\partial x^{2}} \quad(0 \leq x<\infty)
$$

scaling ansatz: $\quad p(x, t) \sim t^{-\beta_{N}-1 / 2} F(\xi) \quad \xi=x / x_{\text {last }}$

$$
\frac{D}{A_{N}} \frac{d^{2} F}{d \xi^{2}}+\frac{\xi}{2} \frac{d F}{d \xi}+\left(\beta_{N}+\frac{1}{2}\right) F=0
$$

convert to Schrödinger equation:

define: $F(\xi)=e^{-\eta^{2} / 4} \mathcal{D}(\eta) \quad \eta=\xi \sqrt{A_{N} / 2 D}$
$\longrightarrow \frac{d^{2} \mathcal{D}_{2 \beta_{N}}}{d \eta^{2}}+\left[2 \beta_{N}+\frac{1}{2}-\frac{1}{4} \eta^{2}\right] \mathcal{D}_{2 \beta_{N}}=0$ subject to $\mathcal{D}_{2 \beta_{N}}(\eta)=0 \quad \begin{array}{ll}\eta & =\sqrt{A_{N} / 2 D} \\ \eta=\infty\end{array}$
lowest energy eigenvalue determined by the criterion:

$$
\begin{array}{ll}
& 2 \beta_{N}+\frac{1}{2} \simeq \eta^{2} / 4 \\
\longrightarrow & \beta_{N} \simeq A_{N} / 16 D
\end{array}
$$

Summary

Khintchine Iterated Logarithm Law

Khintchine (1924), Feller (1968), SR (0I) what is $L(t)$ so that the lamb "survives"?

if $L(t)>t^{1 / 2}, \quad S_{\infty}>0 \quad$ lamb survives
"free" approximation: $\quad c(x, t)=\frac{S(t)}{\sqrt{4 \pi D t}} e^{-x^{2} / 4 D t}$

$$
\frac{\partial S}{\partial t}=-\left.2 D \frac{\partial c}{\partial x}\right|_{x=L}=-\sqrt{\frac{L^{2}}{4 \pi D t}} e^{-L^{2} / 4 D t} \frac{S}{t}
$$

Khintchine Iterated Logarithm Law

Khintchine (1924), Feller (1968), SR (0I)
$\frac{\partial S}{\partial t}=-\left.2 D \frac{\partial c}{\partial x}\right|_{x=L}=-\sqrt{\frac{L^{2}}{4 \pi D t}} e^{-L^{2} / 4 D t} \frac{S}{t}$
$\begin{aligned} & \text { if } L=\sqrt{A t} \\ & (\text { and } A \gg 1)\end{aligned} \quad \ln S(t)=-\int_{0}^{t} \beta \frac{d t^{\prime}}{t^{\prime}} \quad \beta=\sqrt{\frac{A}{4 \pi D}} e^{-A / 4 D} \quad \begin{aligned} & \text { if } \mathrm{A}=\text { const., } \\ & \text { even if } \mathrm{A} \gg 1 \\ & \rightarrow \text { lamb dies }\end{aligned}$
if $L=\sqrt{4 D t f(t)} \quad \ln S(t)=-\int_{0}^{t} \sqrt{\frac{f\left(t^{\prime}\right)}{\pi}} e^{-f\left(t^{\prime}\right)} \frac{d t^{\prime}}{t^{\prime}}$

Khintchine Iterated Logarithm Law

Khintchine (I924), Feller (1968), SR (0I)
$\frac{\partial S}{\partial t}=-\left.2 D \frac{\partial c}{\partial x}\right|_{x=L}=-\sqrt{\frac{L^{2}}{4 \pi D t}} e^{-L^{2} / 4 D t} \frac{S}{t}$
$\begin{aligned} & \text { if } L=\sqrt{A t} \\ & (\text { and } A \gg 1)\end{aligned} \quad \ln S(t)=-\int_{0}^{t} \beta \frac{d t^{\prime}}{t^{\prime}} \quad \beta=\sqrt{\frac{A}{4 \pi D}} e^{-A / 4 D} \quad \begin{aligned} & \text { if } \mathrm{A}=\text { const., } \\ & \text { even if } \mathrm{A} \gg 1 \\ & \rightarrow \text { lamb dies }\end{aligned}$
if $L=\sqrt{4 D t f(t)} \quad \ln S(t)=-\int_{0}^{t} \sqrt{\frac{f\left(t^{\prime}\right)}{\pi}} e^{-f\left(t^{\prime}\right)} \frac{d t^{\prime}}{t^{\prime}}$

$$
=-\int_{0}^{\ln t} \sqrt{\frac{f(x)}{\pi}} e^{-f(x)} d x
$$

for $f(x)=\lambda \ln x, \quad \rightarrow \quad \ln S \sim-\int^{\ln t} \frac{d x}{x^{\lambda}} \quad$ marginal case $\lambda=1$

$$
\begin{aligned}
& \text { when } L=\sqrt{4 D t \ln \ln t} \quad \rightarrow \quad S(t) \sim \frac{1}{\ln t} \\
& \text { ultimately } L(t) \sim \sqrt{4 D t\left(\ln \ln t+\frac{3}{2} \ln \ln \ln t+\ldots\right)} \quad \rightarrow S(t) \sim \frac{1}{\ln \ln \ln \ldots \ln t}
\end{aligned}
$$

Survival in Wedges

$$
S(t) \sim t^{-\pi / 2 \Theta}
$$

Survival in Wedges, Cones

Survival in Wedges, Cones

$$
S(t) \sim t^{-\beta(\Theta, d)}
$$

Ben-Naim and Krapivsky (2010)

Survival in Wedges, Cones, and Paraboloids

Survival in Wedges, Cones, and Paraboloids

Survival in Wedges, Cones, and Paraboloids

Bañuelos et al (200I)
$\uparrow \mathrm{x} \quad y=a x^{2}$
Lifshitz and Chi (2002)
KR (2010)

survival criterion:

prob. to remain within $|x|$ and exit via right edge:
y

$$
e^{-\pi^{2} D t /(2 x)^{2}} \times e^{-y^{2} / 4 D t}
$$

optimize over y :

$$
\begin{aligned}
& S(t)<\int_{0}^{\infty} e^{-\pi^{2} D t /(2 x)^{2}} \times e^{-y^{2} / 4 D t} d y \\
&<\exp \left[-\frac{3}{4}\left(\frac{a \pi^{2}}{2}\right)^{2 / 3}(D t)^{1 / 3}\right] \equiv \exp \left[-A t^{1 / 3}\right] \\
& A=\frac{3}{8} \pi^{4 / 3} \quad A_{\text {exact }}=\frac{3}{8} \pi^{2}
\end{aligned}
$$

Survival in Wedges, Cones, and Paraboloids

 generalized paraboloid in d dimensions:$$
y=a\left(\sqrt{x_{1}^{2}+\ldots+x_{d-1}^{2}}\right)^{p} \quad p>1
$$

the same approach as $d=2$ gives:

$$
S<\exp \left[-\frac{p+1}{4}\left(\frac{4 j_{(d-3) / 2}^{2} a^{2 / p}}{p}\right)^{\frac{p}{p+1}}(D t)^{\frac{p-1}{p+1}}\right]
$$

Hitting Times in Wedges, Cones, and Paraboloids

backward equation: $\quad T \equiv\langle t(\vec{r})\rangle=\sum_{\vec{r}^{\prime}} p_{\vec{r} \rightarrow \vec{r}^{\prime}}\left[t\left(\vec{r}^{\prime}\right)+\delta t\right]$
continuum limit: $\quad D \nabla^{2} T=-\left.1 \quad T\right|_{\text {boundary }}=0$
relation to

$$
\begin{aligned}
T=\int_{0}^{\infty} t F(t) d t & =-\int_{0}^{\infty} t \frac{\partial S}{\partial t} d t \\
& =\int_{0}^{\infty} S(t) d t
\end{aligned}
$$

Hitting Times in Wedges, Cones, and Paraboloids

 infinite wedge: if $S(t)$ decays faster than t^{-1}, then $T<\infty$$$
\Theta_{c}= \begin{cases}\pi / 2 & d=2 \\ 2 \cos ^{-1}(1 / \sqrt{3}) \approx 109.47 & d=3\end{cases}
$$

pie wedge: $\xlongequal[=]{\substack{\Omega \\ \Theta}}$

$$
\begin{aligned}
T(r, \theta)=\frac{r^{2}}{4 D}\left(\frac{\cos 2 \theta}{\cos \Theta}-1\right)+\sum_{n=0}^{\infty} A_{n} r^{\lambda_{n}} \cos \left(\lambda_{n} \theta\right) \quad \begin{array}{l}
\lambda_{n}=(2 n+1) \frac{\pi}{\theta} \\
A_{n}=\frac{(-1)^{n+1}\left(R^{2-\lambda}\right.}{D \Theta \lambda_{n}\left(\lambda_{n}^{2}-4\right)} \\
\text { if } \Theta \geq \frac{\pi}{2},
\end{array}, \text { then } T \sim r^{\pi / \Theta} R^{2-\pi / \Theta} \begin{array}{l}
\text { divergent for } \\
\Theta>\pi / 2
\end{array}
\end{aligned}
$$

parabola: $\quad T=\frac{1}{2 D}\left(y-x^{2}\right)$

The Closest Particle

The Closest Particle

warm-up: Id

closest particle criterion:

$$
\int_{0}^{L} c(x, t) d x=1
$$

The Closest Particle

warm-up: Id

closest particle criterion:

$$
\int_{0}^{L} c(x, t) d x=1 \rightarrow L \sim\left(\frac{D t}{c_{0}^{2}}\right)^{1 / 4}
$$

The Closest Particle

$$
\begin{aligned}
& \int_{0}^{L} r c(r, t) d r \int_{0}^{\Theta} g(\theta) d \theta=1 \rightarrow L \sim(D t)^{\pi /(2 \pi+4 \Theta)} c_{0}^{-2 \Theta /(\pi+2 \Theta)} \\
& L \sim\left\{(r, t) \sim c_{0}\left(\frac{r}{\sqrt{D t}}\right)^{-\pi / \Theta} f(\theta)\right. \\
& \begin{array}{lll}
(D t)^{1 / 2} & \Theta \downarrow 0 & \text { crack } \\
(D t)^{1 / 4} \rho^{-1 / 4} & \Theta=\pi / 2 & \text { corner } \\
(D t)^{1 / 6} \rho^{-1 / 3} & \Theta=\pi & \text { plane } \\
(D t)^{1 / 10} \rho^{-2 / 5} & \Theta=2 \pi & \text { needle }
\end{array}
\end{aligned}
$$

Some Concluding Remarks

- particle capture problems most interesting in Id
- 3-particle problems well understood:
no reversal, $123 \nRightarrow 32$ I

$$
t^{-3 / 10}
$$

3 never trails, $123 \nRightarrow 32 I$, 312

$$
t^{-3 / 8}
$$

3 always leads I

$$
t^{-3 / 6}
$$

3 always leads I \& 2
$t^{-3 / 4}$
order preserved
$t^{-3 / 2}$

- several-particle problems partially understood:

Some Concluding Remarks

- particle capture problems most interesting in Id
- 3-particle problems well understood:
no reversal, $123 \nRightarrow 32$ I $t^{-3 / 10}$
3 never trails, $123 \nRightarrow 321,312$

$$
t^{-3 / 8}
$$

3 always leads I
$t^{-3 / 6}$
3 always leads I \& 2
$t^{-3 / 4}$ order preserved

$$
t^{-3 / 2}
$$

- several-particle problems partially understood: accurate but uncontrolled approximation for survival probability
- $N \rightarrow \infty$ approximation simple, powerful; cheap "derivation" of iterated logarithm law

equal-area cone
Ben-Naim \&
Krapivsky (2010)

Crass Commercialism

Aimed at graduate students, this book explores some of the core phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills.
The book begins with microscopic transport processes: diffusion, collision-driven phenomena, and exclusion. It then presents the
 henomaro and solution techniques are phenom. following chapters cover discrete and a continuum formulation, the role of disorder in non-equilibrium processes, and hysteresis from the non-equilibrium perspective. The concluding chapters address population dynamics, chemical reactions, and a kinetic perspective on complex networks. The book contains more than 200 exercises to test students understanding of the subject. A link to a website hosted by the authors, containing an up-to-date list of errata and solutions to some of the exercises, can be found at
www.cambridge.org/9780521851039.
Pavel L. Krapivsky is Research Associate Professor of Physics at Boston University. His current research interests are in strongly interacting many-particle systems and their applications to kinetic sin systems, networks, and biological phenomen
Sidney Redner is a Professor of Physics at Boston University. His current research interests are in non-equilibrium statistical physic and its applications to reactions, networks, social systems, biologica phenomena, and first-passage processes.
Eli Ben-Naim is a member of the Theoretical Division and an affiliate of the Center for Nonlinear Studies at Los Alamos National Laboratory. He conducts research in statistical, nonlinear, and soft condensed-matter physics, including the collective dynamics of interacting particle and granular systems.

Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particles (red) and the stationary particles (blue) Shown are the cloud of moving particles (red) and the stationary particles bllud)
that have not yet experienced any collisions. Figure courtesy of Tibor Antal.

I. Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation
6. Fragmentation
7. Adsorption
8. Spin Dynamics
9. Coarsening 10. Disorder
II. Hysteresis
12. Population Dynamics
13. Diffusion Reactions
14. Complex Networks > 200 problems

