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Introduction and motivation

Asymptotic distributions of extreme values of iid random
variables known for long, but strong finite-size effects, not
always easy to handle with standard probabilistic methods

Idea: Use the renormalization language as a convenient tool
to analyze fixed points and finite-size corrections, in spite of
the absence of correlations

Approach initiated by the Budapest group
G. Györgyi, N. R. Moloney, K. Ozogány, and Z. Rácz, Phys. Rev. Lett. 100,

210601 (2008).

G. Györgyi, N. R. Moloney, K. Ozogány, Z. Rácz and M. Droz, Phys. Rev. E

81, 041135 (2010).

Aim of the present contribution: reformulate the results using
a differential representation, which is more convenient
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Basic renormalization idea

Extreme value statistics

N iid random variables, distribution ρ(x)

Integrated distribution µ(x) =
∫ x

−∞ ρ(x ′)dx ′

Integrated distribution for the maximum value

Prob(max(x1, . . . , xN) < x) = µN(x)

Decimation procedure

Split the set of sufficiently large N random variables xi into
N ′ = N/p blocks of p random variables each

yj the maximum value in the j th block

max(x1, . . . , xN) = max(y1, . . . , yN′)

yj are also i.i.d. random variables, with a distribution µp(y)

µp(y) = µp(y)
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Renormalization operation

Raising to a power and rescaling

[R̂pµ](x) = µp
(

apx + bp
)

Necessity of scale and shift parameters ap and bp to lift
degeneracy of the distribution

Conditions to fix ap and bp to be specified later on

Parameterization of the flow

p considered as continuous rather than discrete

change of flow parameter p = es : distribution µ(x , s),
parameters a(s) and b(s)

Parent distribution µ(x) obtained for s = 0

µ(x , 0) = µ(x)
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Renormalization operation

Change of function

double exponential form

µ(x , s) = e−e−g(x ,s)

Link to the parent distribution: g(x , s = 0) = g(x)

Standardization conditions

Conditions to fix the parameters a(s) and b(s)

µ(0, s) ≡ e−1, ∂xµ(0, s) ≡ e−1

In terms of the function g(x , s)

g(0, s) ≡ 0, ∂xg(0, s) ≡ 1
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Renormalization operation

Renormalization of µ(x , s)

µ(x , s) ≡ [R̂sµ](x) = µe
s(

a(s)x + b(s)
)

Renormalization of g(x , s) = − ln[− lnµ(x , s)]

g(x , s) = g
(

a(s)x + b(s)
)

− s.

Very simple transformation: linear change of variable in the
argument and global additive shift.

However, one needs to determine a(s) and b(s).
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Differential representation

Iteration of the RG transformation

g(x , s +∆s) = [R̂∆sg ](x , s)

Infinitesimal transformation ∆s = ds

g(x , s + ds) = [R̂dsg ](x , s)

More explicitly, with a(ds) = 1 + γ(s)ds and b(ds) = η(s)ds:

g(x , s + ds) = g
(

(

1 + γ(s)ds
)

x + η(s)ds, s
)

− ds

where the functions γ(s) and η(s) are to be specified

Linearizing with respect to ds, we get

∂sg(x , s) =
(

γ(s)x + η(s)
)

∂xg(x , s)− 1
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Partial differential equation

Determination of γ(s) and η(s)

Standardiz. conditions g(0, s) ≡ 0 and ∂xg(0, s) ≡ 1 yield

η(s) ≡ 1

γ(s) = −∂2xg(0, s)

Partial differential equation of the flow

∂sg(x , s) = (1 + γ(s)x)∂xg(x , s)− 1
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Fixed points of the flow

Stationary solution g(x , s) = f (x):

0 = (1 + γx)f ′(x)− 1

with γ = −f ′′(0)

Using the standardization condition f (0) = 0

f (x ; γ) =

∫ x

0
(1 + γy)−1dy =

1

γ
ln(1 + γx)

Fixed point integrated distribution

M(x ; γ) = e−e−f (x ;γ)
= e−(1+γx)−1/γ

Easy way to recover the well-known generalized extreme value
distributions, obtained here as a fixed line of the RG transformation

Eric Bertin Renormalization approach for extreme statistics



Perturbations about a fixed point

Linear perturbations

Perturbation φ(x , s) introduced through

g(x , s) = f (x) + f ′(x)φ(x , s)

Linearized partial differential equation

∂sφ(x , s) = (1 + γx) ∂xφ(x , s)− γ φ(x , s)− x ∂2xφ(0, s)

Convergence properties to the fixed point distribution are
obtained from the analysis of this PDE
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Eigenfunctions

Definition

Perturbations of the form

φ(x , s) = ǫ(s)ψ(x)

Standardiz. conditions for ψ(x): ψ(0) = 0, ψ′(0) = 0

To lift the ambiguity of the factorization ǫ(s)ψ(x), we impose
ψ′′(0) = −1, which sets the scale of ψ.

The condition γ(s) = −∂2xg(0, s) translates into

ǫ(s) = γ(s)− γ

Equation for ψ(x) (notation ǫ̇ ≡ d
ds
)

ǫ̇(s)ψ(x) = ǫ(s)
(

(1 + γx)ψ′(x)− γψ(x) + x
)
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Eigenfunctions

Solvability condition

Equation can be solved only if

ǫ̇(s)

ǫ(s)
= γ′

which implies

ǫ(s) ∝ eγ
′s

Differential equation for ψ(x):

(1 + γx)ψ′(x) = (γ + γ′)ψ(x)− x
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Eigenfunctions

Solution for the Weibull and Fréchet cases (γ 6= 0)

ψ(x ; γ, γ′) =
1 + (γ′ + γ)x − (1 + γx)γ

′/γ+1

γ′(γ′ + γ)

in the range of x such that 1 + γx > 0.

Solution for the Gumbel case (γ = 0)

ψ(x ; γ′) =
1

γ′2

(

1 + γ′x − eγ
′x
)
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Eigenfunctions

Empirical interpretation

N variables in the block ⇒ s = lnN

Convergence g(x , s = lnN) → f (x)

Corrections proportional to eγ
′s ∝ Nγ′

(if γ′ = 0: logarithmic convergence in N).

Interpretation of γ′ > 0? Are there unstable solutions?

⇒ Can we look at non-perturbative solutions?
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Non-perturbative solutions

Motivation
Unstable solutions around the fixed point may seem
counterintuitive: can we find an example of full RG trajectory
starting from an unstable direction?

Back to the equations: the Gumbel case

Equation to be solved

∂sg(x , s) = (1 + γ(s)x)∂xg(x , s)− 1

Ansatz for the solution starting from f (x) = x

g(x , s) = x + ǫ(s)ψ
(

x ; γ′(s)
)

Same as linear perturbation, except that γ′ depends on s

Eric Bertin Renormalization approach for extreme statistics



Non-perturbative solutions

Equation of the flow

ǫ̇ ψ + ǫ γ̇′ ∂γ′ψ − (1 + ǫx) ǫ ∂xψ − ǫ x = 0

Specific properties of ψ(x), resulting from the knowledge of
its explicit form

∂γ′ψ = −
2

γ′
ψ +

x

γ′
∂xψ

∂xψ = γ′ψ − x

This results in

(

ǫ̇− 2ǫ
γ̇′

γ′
− ǫγ′

)

ψ +

(

ǫ
γ̇′

γ′
− ǫ2

)

x∂xψ = 0
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Non-perturbative solutions

Equations for ǫ(s) and γ′(s)

ǫ̇ = 2ǫ2 + ǫγ′

γ̇′ = ǫγ′.

PDE for the RG flow ⇒ system of two coupled nonlinear
ordinary differential equations

Only a restricted family of solutions, not the full flow

Visualization in a two-dimensional parameter space (ǫ, γ′).
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Non-perturbative solutions

Solution for ǫ

Look for a parametric solution ǫ(γ′)

One finds

dǫ

dγ′
=

2ǫ

γ′
+ 1

Solution: parabola

ǫ = Aγ′2 − γ′ , A =
ǫ0 + γ′0
γ′20

Implicit solution for s

s(γ′) =
1

γ′
−

1

γ′0
+
ǫ0 + γ′0
γ′20

ln

(

1 +
γ′0
ǫ0

−
γ′20
ǫ0γ′

)
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Illustration of the flow

Parameter space (ǫ, γ′)
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Evolution of the distributions

Starting close to the Gumbel distribution (γ′ = 2)... and coming
back to it (at γ′ = 0) after an excursion
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Flow around the Fréchet distribution (γ > 0)

Ansatz

g(x , s) = f
(

x + ǫ(s)ψ
(

x ; γ̄(s),B γ̄(s)
)

; γ0

)

with

f (x ; γ0) =
1

γ0
ln(1 + γ0x)

and

ψ(x ; γ, γ′) =
1 + (γ′ + γ)x − (1 + γx)γ

′/γ+1

γ′(γ′ + γ)
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Flow around the Fréchet distribution (γ > 0)

Ansatz

g(x , s) = f
(

x + ǫ(s)ψ
(

x ; γ̄(s),B γ̄(s)
)

; γ0

)

B constant parameter

ǫ(s) and γ̄(s) two functions satisfying

ǫ̇ = 2ǫ2 + ǫ(γ0 + (B + 1)γ̄)

˙̄γ = γ̄(ǫ+ γ0 − γ̄)
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Diagram of the flow (Fréchet)

Starting from a Fréchet distribution of parameter γ0 [fixed points
(i) and (ii)], one ends up at another Fréchet distribution of
parameter γ1 6= γ0 [fixed points (iii) and (iv)]

E. Bertin, G. Györgyi, J. Stat. Mech. P08022 (2010)
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Formal analogy between sums and extremes

Extreme value statistics for iid random variables

Relevant mathematical object: integrated distribution µ(x)

Integrated distribution of the maximum of N iid random
variables

µN(x) = µ(x)N

Linear rescaling of x to preserve the standardiz. conditions

Statistics of sums of iid random variables

Relevant mathematical object: characteristic function Φ(q)

Characteristic function for the sum of N iid random variables

ΦN(q) = Φ(q)N

Linear rescaling

Same formal structure, only the objects differ
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Renormalization transform for sums

Random sum

Z =
1

aN

N
∑

i=1

zi

with zi i.i.d. numbers each with density P(z)

aN scaling factor ensuring a non-degenerate limit distribution

Characteristic (or moment generating) function

Φ(q) =

∫ ∞

−∞
dz e iqz P(z)

Restriction to even distributions P(z) = P(−z) so that Φ(q)
is real (makes RG calculations easier)

One also has Φ(q) = Φ(−q)
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Renormalization transform for sums

Transformation of the characteristic function

ΦN(q) the characteristic function of the sum Z

ΦN(q) = ΦN(aNq)

Renormalization transform, with s = lnN

Φ(q, s) = [R̂sΦ](q) = Φes
(

a(s) q
)

Standardization conditions

Φ(1, s) = Φ(−1, s) ≡ e−1

Remark: a single rescaling parameter a(s) because 〈z〉 due to the
parity of P(z), no need for an additive shift
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Renormalization transform for sums

Double exponential form

The function h(q, s) is introduced as

Φ(q, s) = e−e−h(q,s)

Parity h(q, s) = h(−q, s): considering only a half-axis in q is
enough

To prepare for the analogy to EVS, we shall consider the
negative semi-axis, i.e. q < 0

Renormalization transform for h(q, s)

h(q, s) = h
(

a(s) q
)

− s

with standardiz. conditions h(0, s) = +∞ and h(−1, s) = 0
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Renormalization transform for sums

Partial differential equation of the flow

Along the same lines as for EVS, one can consider an
infinitesimal renormalization transformation, eventually
yielding

∂sh(q, s) = q γ(s) ∂qh(q, s)− 1

γ(s) is given by

γ(s) = −
1

∂qh(−1, s)

Very similar to the PDE obtained for extreme values

Differences between the PDEs arise from the different choices
made for the standardization conditions
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Renormalization transform for sums

Fixed point solution

One looks for a solution h(q, s) = f (q)

Ordinary differential equation for f (q)

q γ f ′(q) = 1, q < 0

Solution satisfying f (−1) = 0

f (q; γ) =
1

γ
ln(−q)
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Renormalization transform for sums

Result for the characteristic function

Φ(q; γ) = e−|q|
−

1
γ

Characteristic function of the symmetric Lévy distribution, of
parameter α = −1/γ.

Also precisely corresponds to the original form of the Weibull
distribution (γ < 0) obtained by Fisher and Tippett (1928).

Here, one restriction: γ ≤ −1
2 , equivalent to 0 < α ≤ 2
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Renormalization transform for sums

Further comments

Linear stability analysis (eigenfunctions, ...) can be performed
in the same way as for extreme value statistics

E. Bertin, G. Györgyi, J. Stat. Mech. P08022 (2010)

Exact non-perturbative solutions describing the crossover from
one fixed point to another can be given.

Full analysis in the general case of an arbitrary distribution
P(z), without symmetry assumption

E. Bertin, G. Györgyi, Z. Simon, in preparation
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Conclusion

On the present work

Renormalization is a convenient tool to analyze fixed points
and finite size corrections

Analysis of finite size corrections made easy by the use of
eigenfunctions

Emphasis put here on function space aspects, but the
approach also allows one to determine the parameters γ and
γ′ from the parent distribution

What remains to be done?

Can be applied to variants of the present problems, for

instance, statistics of max(x
q(n)
1 , . . . , x

q(n)
i )

Is renormalization without correlation really renormalization?
Extension to correlated variables welcome... but yet unclear
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