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Figure: E. Ivar Fredholm (1866–1927) and Paul Painlevé (1863–1933).



Figure: Eugene Wigner (1902–1995) and Freeman Dyson



We also mention the important early work of

M. L. Mehta and M. Gaudin

Gaudin, using Mehta’s (then) newly developed polynomial method,
was the first to show that the

probability of no eigenvalues in an interval (0, s) in GUE

is expressible as a Fredholm determinant of the sine kernel

1

π

sin(x − y)

x − y

evaluated on the interval (0, s)



2D Ising Model

First occurence of Toeplitz and Fredholm Dets Painlevé

Wu, McCoy, C.T., & Barouch (1973–77):

lim
T→T±c ,R2=M2+N2→∞

r=R/ξ(T )fixed

E (σ00σMN) =

{
sinh 1

2ψ(r)

cosh 1
2ψ(r)

}
×

exp

(
−1

4

∫ ∞
r

(
dψ

dy
)2 − sinh2 ψ(y) dy

)
where

d2ψ

dr2
+

1

r

dψ

dr
=

1

2
sinh(2ψ), ψ(r) ∼ 2

π
K0(r), r →∞.

y = e−ψ is a particular Painlevé III transcendent and K0 is the
modified Bessel function.



Sato, Miwa & Jimbo, 1977–1980

τ -functions and holonomic quantum fields

A class of field theories that include the scaling limit of the Ising
model and for which the expression of correlation functions in
terms of solutions to holonomic differential equations is a general
feature.



These developments led Jimbo-Miwa-Môri-Sato to consider, in
1980, the Fredholm determinant and Fredholm minors of the
operator whose kernel is the familiar sine kernel

1

π

sinπ(x − y)

x − y

on the domain J = (a1, b1) ∪ (a2, b2) ∪ · · · ∪ (an, bn).
Their main interest was the density matrix of the impenetrable
Bose gas, and only incidentally, random matrices.



For J = (0, s), the JMMS result is

det (I − λKsine) = exp

(
−
∫ πs

0

σ(x ;λ)

x
dx

)
where

(xσ′′)2 + 4(xσ′ − σ)
(
xσ′ − σ + (σ′)2

)
= 0

with boundary condition

σ(x , λ) = −λ
π

x + O(x2), x → 0.

I σ is expressible in terms of Painlevé V.

I Okamoto analyzed the τ -function associated to Painlevé
equations.

I A simplified derivation of the JMMS equations by TW.

I Connections with quantum inverse scattering were developed
by Its, Korepin and others.



RMM with Unitary Symmetry

Many RMM with unitary symmetry come down to the evaluation
of Fredholm determinants det(I − λK ) where K has kernel of the
form

ϕ(x)ψ(y)− ψ(x)ϕ(y)

x − y
χJ(y)

where
J = (a1, b1) ∪ (a2, b2) ∪ · · · ∪ (an, bn).

Examples:

I Sine kernel: ϕ(x) = sinπx , ψ(x) = cosπx .

I Airy kernel: ϕ(x) = Ai(x), ψ(x) = Ai′(x).

I Bessel kernel: ϕ(x) = Jα(
√

x), ψ(x) = xϕ′(x).

I Hermite kernel: ϕ(x) = (N
2 )1/4ϕN(x), ψ(x) = (N

2 )1/4ϕN−1(x)
where ϕk(x) = harmonic oscillator wave fns.



A general theory of such Fredholm determinants was developed
by TW in the 1990s under the additional hypothesis that

m(x)
d

dx

(
ϕ
ψ

)
=

(
A(x) B(x)
−C (x) −A(x)

) (
ϕ
ψ

)
where m, A, B and C are polynomials. For example, for the Airy
kernel

m(x) = 1, A(x) = 0, B(x) = 1, C (x) = −x .

The basic objects of the theory are

Qj(x ; J) = (I − K )−1 x jϕ(x), Pj(x ; J) = (I − K )−1 x jψ(x),

and

uj = (Qj , ϕ) , vj = (Pj , ϕ) , ṽj = (Qj , ψ) ,wj = (Pj , ψ)

where (·, ·) denotes the inner product. The independent variables
are the endpoints aj and bj making up J.



There are two types of differential equations:

I Universal equations.

I Equations that depend upon m, A, B and C .

For K = KAiry with J = (s,∞) reduces to Painlevé II

d2q

ds2
= s q + 2q3

satisfying the boundary condition

q(s) ∼ Ai(s) as s →∞.

This is called the Hastings-McLeod solution of Painlevé II.
This leads to the distribution of the largest eigenvalue in GUE in
the edge scaling limit

F2(x) = exp

(
−
∫ ∞

x
(x − y)q(y)2 dy

)



I Palmer and Harnad & Its have an isomondromic
deformation approach to these type of kernels.

I Adler, Shiota, & van Moerbeke’s Virasoro algebra
approach gives equations for the resolvent kernel R(s, s).

I Given the DE, e.g. PII , one is faced with the asymptotic
analysis of the solutions which involves finding connection
formulae, e.g./ as x → −∞,

log det F2(x) = −x3

12
− 1

8
log x + κ+ O(x−3/2)

where

κ =
1

24
log 2 + ζ ′(−1)

Remark: The first two terms follow from the connection
formula for PII —the constant κ was conjectured in 1994 and
only proved in 2006.



RMM with Orthogonal Symmetry

The added difficulty with RMM with orthogonal symmetry is that
the kernels are matrix kernels. For example, for finite N GOE the
operator is

K1 = χ

(
K2 + ψ ⊗ εϕ K2D − ψ ⊗ ϕ
εK2 − ε+ εψ ⊗ εϕ K2 + εϕ⊗ ψ

)
χ

where

K2
.

=
N−1∑
n=0

ϕn(x)ϕn(y),

ε is the operator with kernel 1
2sgn(x − y), D is the differentiation

operator, and χ is the indicator function for the domain J.
Notation: A⊗ B

.
= A(x)B(y).



The idea of the proof in TW is to factor out the GUE part

(I − K2χ)

and through various determinant manipulations show that the
remaining part is a finite rank perturbation. Thus one ends up
with formulas like

det(I − K1) = det(I − K2χ) det

I −
k∑

j=1

αj ⊗ βj


For the case J = (s,∞), an asymptotic analysis shows that as
N →∞ the distribution of the scaled largest eigenvalue in GOE is
expressible in terms of the same PII function appearing in GUE.



The resulting GOE and GSE largest eigenvalue distribution
functions are

F1(x) = exp

(
−1

2

∫ ∞
x

q(y) dy

)
(F2(x))1/2

F4(x) = cosh

(
1

2

∫ ∞
x

q(y) dy

)
(F2(x))1/2

where

F2(x) = exp

(
−
∫ ∞

x
(x − y)q(y)2 dy

)
and q is the Hastings-McLeod solution of PII .
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Figure: Largest eigenvalue densities fβ(x) = dFβ/dx , β = 1, 2, 4.



I The edge scaling limit is more subtle for GOE than for
GUE or GSE. For GUE and GSE we have convergence in
trace norm to limiting operators K2,Airy and K4,Airy, but for
GOE the convergence is to a regularized determinant.

I Ferrari & Spohn gave a different determinantal expression
for F1. It would be interesting to explore further their
approach and its connection to the original GOE pfaffian
approach of Dyson, et al.



I The asymptotics as x → −∞ is much more difficult and the
complete solution was only recently achieved for β = 1, 2, 4 by
Baik, Buckingham, DiFranco. As x → −∞

F1(x) = τ1
e
− 1

24
|x |3− 1

3
√

2
|x |3/2

|x |1/16

(
1− 1

24
√

2|x |3/2
+ O(|x |−3)

)
,

F2(x) = τ2
e−

1
12
|x |3

|x |1/8

(
1 +

3

26|x |3
+ O(|x |−6)

)
,

F4(x) = τ4
e
− 1

24
|x |3+ 1

3
√

2
|x |3/2

|x |1/16

(
1 +

1

24
√

2|x |3/2
+ O(|x |−3)

)
where

τ1 = 2−11/48e
1
2
ζ′(−1), τ2 = 21/24eζ

′(−1), τ4 = 2−35/48e
1
2
ζ′(−1)



I Next-largest, etc. eigenvalue distributions PII type
representations: unitary case TW; Dieng orthogonal and
symplectic cases.
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Figure: A histogram of the four largest (centered and normalized)
eigenvalues for 104 realizations of 103 × 103 GOE matrices.



Universality Theorems

To what extent do the above limit laws depend upon the
Gaussian and invariance assumptions for the probability
measure?

Invariant Ensembles:
Replace Gaussian measure with

cN,β exp (−βtr(V (A))/2) dA

where V is a polynomial of even degree and positive leading
coefficient. This implies that the joint density for the eigenvalues is
(β = 1, 2, 4)

Pβ,V ,N(x1, . . . , xN) = CV ,N,β

∏
1≤i<j≤N

|xi − xj |β
N∏

i=1

e−βV (xi )/2



Unitary ensembles (β = 2) are simpler than the orthogonal and
symplectic ensembles (β = 1, 4), but both require for general V
powerful Riemann-Hilbert methods for the asymptotic
analysis.

Theorem. There exist constants z
(β)
N and s

(β)
N such that

lim
N→∞

Pβ,V ,N

(
λmax − z

(β)
N

s
(β)
N

≤ t

)
= Fβ(t), β = 1, 2, 4,

Unitary case (β = 2): Deift, Kriecherbaur, McLaughlin,
Venakides and Zhou, and the orthogonal/symplectic: Deift
& Gioev. Special case V (A) = 1

4A4 − gA2 Bleher and Its
(β = 2) and Stojanovic (β = 1).

These deep theorems broadly extend the domain of
attraction of the Fβ limit laws.



Wigner Ensembles

Complex hermitian or real symmetric N × N matrices H

H =
1√
N

(Aij)
N
i ,j=1

where Aij , 1 ≤ i < j ≤ N are i.i.d. complex or real random
variables with distribution µ. (Diagonal elements are i.i.d. real
random variables independent of the off-diagonal elements.) The
diagonal probability distribution is centered, independent of N and
has finite variance.
Nongaussain Wigner ensembles define non-invariant measures.
No explicit formulas for the joint distribution of eigenvalues.



Soshnikov proved, with µ symmetric (all odd moments are zero)
and the distribution decays as at least as fast as a Gaussian
distribution (together with a normalization on the variances):

Theorem.

lim
N→∞

PW ,N

(
λmax ≤ 1 +

x

2N2/3

)
= Fβ(x)

with β = 1 for real symmetric matrices and β = 2
for complex hermitian matrices.

The importance of Soshnikov’s theorem is the universality of Fβ
has been established for ensembles for which the “integrable”
techniques, e.g. Fredholm theory, Riemann-Hilbert methods,
Painlevé theory, are not directly applicable.



Edge Universality Theorems: Recent Developments

There are far reaching new results by two groups.

I Erdös, Yau & Yin: “The origin of the universality is due
to the local ergodicity of Dyson Brownian motion.”
Eigenvalues of two generalized Wigner ensembles are equal in
the large N limit provided that the second moments of the
two ensembles are identical. This approach builds on some
earlier work of Johansson. Ref: arXiv:1007.4652.

I Tao & Vu: A completely different approach. Ref:
arXiv:0908.1982



Multivariate Statistical Analysis

Johnstone, 2006 ICM:

It is a striking feature of the classical theory of
multivariate statistical analysis that most of the standard
techniques—principal components, canonical correlations,
multivariate analysis of variance (MANOVA),
discriminant analysis and so forth—are founded on the
eigenanalysis of covariance matrices.

Thus it is not surprising that the methods of random matrix theory
have important applications to multivariate statistical analysis.



Principal Component Analysis (PCA)

PCA with p variables have population eigenvalues `j , eigenvalues
of the p × p covariance matrix

Σ = (Cov(Xk ,Xk ′))1≤k,k ′≤p ,

and sample eigenvalues ˆ̀
j , which are the (random) eigenvalues of

the sample covariance matrix

S =
1

n
XX T .

Here X is the p × n data matrix and

n = number of observations of the p variables.



Since the parameters of the underlying probability model describing
the random variables X1,. . . , Xp are unknown, the problem is to
deduce properties of Σ from the observed sample covariance matrix
S .
Assume

X = (X1, . . . ,Xp)

is a p-variate Gaussian distribution Np(0,Σ) and the data matrix
X is formed by n independent draws X1,. . . , Xn.
The p × p matrix XX T is said to have p-variate Wishart
distribution on n degrees of freedom, Wp(n,Σ).
Joint distribution of the eigenvalues l̂j : Complicated by the fact it
involves an integral over the orthogonal group O(p).



Testing the Null Hypothesis: H0

H0: no correlations amongst the p variables, i.e. Σ = I.
Under H0 all population eigenvalues =1, but there is a “spread”
(Marčenko-Pastur) in the sample eigenvalues ˆ̀

j .
To assess whether “large” observed eigenvalues justify rejecting the
null hypothesis, we need an approximation to the the null
hypothesis distribution of the largest sample eigenvalue,

P
(

ˆ̀
1 > t|H0 = Wp(n, I )

)
.



Theorem (Johnstone)

P
(

n ˆ̀
1 ≤ µnp + σnpx |H0

)
−→ F1(x)

where n→∞, p →∞ such that p/n→ γ ∈ (0,∞),

µnp =

(√
n − 1

2
+

√
p − 1

2

)2

σnp =
(√

n +
√

p
) 1√

n − 1
2

+
1√

p − 1
2

1/3

.



I Fractions 1
2 in µnp and σnp improve the rate of convergence to

F1 to “second-order accuracy”.

I El Karoui shows the theorem holds more generally as

p/n→ γ ∈ [0,∞].

I For complex data matrices with Σ = I , there are
corresponding limit theorems where now convergence is to F2

(Johansson).

I Soshnikov and Péché removed the assumption of
Gaussian samples. They assume that the matrix elements
Xij of the data matrix X are independent random variables
with a common symmetric distribution whose moments grow
not faster than the Gaussian ones.

I To summarize, given the centering and norming constants
and together with tables for F1, one has a good
approximation to the null distribution.
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Spiked Populations: BBP Phase Transition

Case of complex Wishart matrices, Σ 6= I: Baik, Ben Arous
& Péché for complex Wishart ensemble, with covariance matrix

Σ = diag (`1, . . . , `r , 1, . . . , 1) .

Consider r = 1 with `1 > 1 and limit

p →∞, n→∞ such that
p

n
→ γ ≥ 1.

Define
wc = 1 +

√
γ and Φ(x) standard normal.



Theorem. With Σ as above (r = 1), let ˆ̀
1 the largest eigenvalue

of the sample covariance matrix.

I If 1 ≤ `1 < wc ,

P

(
n2/3

σ

(
ˆ̀
1 − µ

)
≤ x

)
−→ F2(x),

µ = (1 +
√
γ)2, σ = (1 +

√
γ)(1 +

1
√
γ

)1/3.

I If `1 > wc , then

P

(
n1/2

σ1

(
ˆ̀
1 − µ1)

)
≤ x

)
−→ Φ(x),

µ1 = `1

(
1 +

γ

`1 − 1

)
, σ1 = `21

(
1− γ

(`1 − 1)2

)
.



Theorem. With Σ as above (r = 1), let ˆ̀
1 the largest eigenvalue

of the sample covariance matrix.

I If 1 ≤ `1 < wc ,

P

(
n2/3

σ

(
ˆ̀
1 − µ

)
≤ x

)
−→ F2(x),

µ = (1 +
√
γ)2, σ = (1 +

√
γ)(1 +

1
√
γ

)1/3.

I If `1 > wc , then

P

(
n1/2

σ1

(
ˆ̀
1 − µ1)

)
≤ x

)
−→ Φ(x),

µ1 = `1

(
1 +

γ

`1 − 1

)
, σ1 = `21

(
1− γ

(`1 − 1)2

)
.



Remarks:

I The BBP theorem “shows that a single eigenvalue of the true
covariance Σ may drastically change the limiting behavior of
the largest eigenvalue of sample covariance matrices. One
should understand the above result as the statement that the
eigenvalues exiting the support of the Marčenko-Pastur
distribution form a small bulk of eigenvalues. This small bulk
exhibits the same eigenvalue statistics as the eigenvalues of a
non-normalized GUE (resp. GOE) matrix”.

I If `1 = wc the limiting distribution is a generalization of F2

expressible in terms of the same Painlevé II function q.

I Patterson, Price & Reich have applied these results to
problems of population structure arising from genetic data.

I We mention that these same distributions play an analogous
role in canonical correlations as they do in PCA.
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Final Remarks

We have not discussed the appearance of the Fβ limit laws in
growth processes. This started with Baik, Deift &
Johansson’s work on Ulam’s Problem of the length of the
longest increasing subsequence of a random permutation.

Nor have we discussed the generalization of Fβ to all real β > 0 by
Raḿırez, Rider & Virág.
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