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� Stochastic growth processes

� KPZ equation as a model for a growing interface

� Experiments on universal fluctuations of a growing interface: Myllys
et al. and Takeuchi & Sano

� Exact solution of KPZ equation: Work of Amir-Corwin-Quastel
& Sasamoto-Spohn

� Exact distribution from ASEP needed for KPZ analysis, C.T. &
Widom (TW)



Figure: Want the (random) height function h = h(x , t)



Modelling Growth Processes

∂h

∂t
= Φ(h, x , t) + W (x , t)

Φ −→ captures growth effects to be modelled

W −→ noise term

This is a nonlinear stochastic PDE

Discrete versions are also popular models



Kardar-Parisi-Zhang–1986

Growth occurs normal to the surface

∆h = h(x0, t + ∆t) − h(x0, t)

= v∆t
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term in Φ.



KPZ Equation

∂h

∂t
= ν

∂2h

∂x2
����

diffusion

+λ

�
∂h

∂x

�2

� �� �

growth

+ W
����

noise

� Nonlinear stochastic PDE.

� Difficult to make rigorous sense due to nonlinear growth term.

� KPZ made important prediction as t → ∞

h(x , t) = v∞ t
����

deterministic linear growth

+ t1/3
����

1
3

fluctuations

χ

Famous KPZ 1
3

exponent. χ is a fluctuating quantity—no prediction
from KPZ phenomenology.
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� Finding a “pure KPZ system” has been difficult to achieve
experimentally.

� An early experiment (2003 Myllys, Timonen,. . . ) measured the
“smouldering fronts in paper sheets” and determined that fluctuations
were of order 1/3 demonstrating growth is in KPZ universality class.

Figure: Digitized slow-combustion fronts with 10 s intervals. Courtesy of
M. Myllys.



� Takeuchi & Sano, 2010: Convection of nematic liquid crystal
driven by an electric field. They focus on the interface between two

turbulent states. A thin square container is filled with a liquid
crystal. The liquid crystal molecules, initially aligned perpendicular to
the cell surfaces, strongly fluctuate when an AC voltage is applied
leading to first turbulent state. A laser pulse nucleates a defect in the
liquid crystal causing a second turbulent state.

� See K. A. Takeeuchi & M. Sano, Universal Fluctuations of Growing

Interfaces: Evidence in Turbulent Liquid Crystals, PRL 104, 230601
(2010), for experiments on droplet initial condition.

� To be published: K. A. Takeuchi & M. Sano: Same type of experiment
but with flat initial condition. Please contact Dr. Takeuchi for details.
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� Bertini & Giacomin (1997): Two essential insights

1. Define solution to KPZ equation through a Hopf-Cole transformation

h(T ,X ) = − log Z (T ,X )

where Z satisfies the stochastic heat equation

∂Z

∂T
=

1

2

∂2Z

∂X 2
− Z W

2. Z (T ,X ) is obtained from a weakly asymmetric simple exclusion process
(WASEP)

� For wedge initial conditions, in 2010 Sasamoto/Spohn and
Amir/Corwin/Quastel carried this program out which required
new theorems about the relation between stochastic heat equation and
WASEP. Both groups used the ASEP results of TW which required a
very delicate asymptotic analysis of the TW formula.
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ASEP on Integer Lattice

� Each particle has an independent clock—when it rings with probability
p (q) it makes a jump to the right (left) if site empty; otherwise, jump
is suppressed.

� Initial conditions:
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Mapping to Growing Interface

Initial height function corresponding to step initial condition

h(x , 0) = |x |



Discrete Zε(T , X )

Bertini & Giacomin, Sasamoto & Spohn, Amir, Corwin &
Quastel:

Zε(T ,X ) =
1

2
ε−1/2 exp

�

−λεh(
t

γ
, x) + νεε

−1/2t

�

where
t = ε−3/2T , x = ε−1X , γ = q − p = ε1/2

νε =
1

2
ε +

1

8
ε2, λε = ε1/2 +

1

3
ε3/2

Need ASEP formula for h(t, x) and then let ε → 0
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Step I—Transition probability for N-particle system

� For N-particle ASEP: A configuration X = {x1, . . . , xN}, x1 < · · · xN .

� First compute for N-particle ASEP

PY (X ; t) = probability of configuration X at time t

given the initial configuration is Y at t = 0.

� Write master equation (forward equation) for PY (X ; t) and use ideas
from Bethe Ansatz: Incorporate the interaction between particles into
the boundary conditions of a free particle system.

� Want solution to master equation that obeys the initial condition

PY (X ; 0) = δX ,Y

Satisfying the initial condition is the hard part!



SN denotes the permutation group on N symbols, σ = (σ1, . . . , σN) ∈ SN

Theorem (TW):

PY (X ; t) =
�

σ∈SN

�

C

. . .

�

C

Aσ(ξ)

N�

i=1

ξ
xi−y

σ(i)−1

σ(i) etε(ξi ) dNξ

where

ε(ξi ) =
p

ξi

+ qξi − 1

Aσ(ξ) =
�

inversions (β,α) of σ

S(ξβ, ξα)

S(ξ, ξ�) = − p + qξξ� − ξ

p + qξξ� − ξ�

C = sufficiently small circle about zero

i.e. all poles of Aσ lie outside of C

and each factor dξi carries a factor 1
2πi

.
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� Simplest case m = 1. Leads to a complicated sum over the
permutation group:
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σ

sgn(σ)




�

i<j
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2
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Step II: Compute marginal distributions

� Want PY (xm(t) ≤ x): The probability distribution of the position of
the mth particle from the left.

� Simplest case m = 1. Leads to a complicated sum over the
permutation group:

�

σ

sgn(σ)




�

i<j

f (ξσ(i), ξσ(j))×

ξσ(2)ξ
2
σ(3) · · · ξ

N−1
σ(N)

(1 − ξσ(1)ξσ(2) · · · ξσ(N))(1 − ξσ(2) · · · ξσ(N)) · · · (1 − ξσ(N))

�

where f (ξ, ξ�) = p + qξξ� − ξ

� Surprisingly this equals

pN(N−1)

�

i<j(ξj − ξi )
�

i (1 − ξi )
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Story behind proof of identity
� First discover identity for small values of N using Mathematica.
� But how to prove the identity for all N?

�

� Doron saw the identity when it was still a conjecture and suggested to
the authors that an identity of I. Schur (Problem VII.47 in Polya &
Szegö) had a similar look about it and might be proved in a similar
way. This led to the proof.
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� In final large contour expansion can take limit N → ∞.

� For step initial condition and a final symmetrization of the integrand
leads to

P(xm(t) ≤ x) = (−1)m
�

k≥m

1

k!

�
k − 1

k − m

�

τ

τm(m−1)/2−mk+k/2(pq)k
2/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

f (ξi , ξj)

�

i

ξx
i etε(ξi )

(1 − ξi )(qξi − p)
dξ1 · · · dξk

where [ n
k
]τ is the τ -binomial coefficient and CR is a large contour

about zero, i.e. no poles outside of contour.



� For m > 1 computation of P(xm(t) ≤ x) is more complicated: Need
small contours and large contours. This requires another identity
involving τ -binomial coefficients, τ = p/q

� In final large contour expansion can take limit N → ∞.

� For step initial condition and a final symmetrization of the integrand
leads to

P(xm(t) ≤ x) = (−1)m
�

k≥m

1

k!

�
k − 1

k − m

�

τ

τm(m−1)/2−mk+k/2(pq)k
2/2

×
�

CR

· · ·
�

CR

�

i �=j

ξj − ξi

f (ξi , ξj)

�

i

ξx
i etε(ξi )

(1 − ξi )(qξi − p)
dξ1 · · · dξk

where [ n
k
]τ is the τ -binomial coefficient and CR is a large contour

about zero, i.e. no poles outside of contour.

� Unfortunately, we are unable to perform an asymptotic analysis at this
stage. Have similar formulas for other initial conditions.
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Step III: Contour Integral Representation
Fredholm Determinant Integrand

� For step initial condition, above integrands have nice determinant
representation (essentially a Cauchy determinant)

� With this determinant identity, recognize the kth term to be the kth
term in the Fredholm expansion times some coefficients. This together
with the τ -binomial theorem gives

PZ+(xm(t) ≤ x) =

�
det(I − λK )

�m−1
k=0 (1 − λτ k)

dλ

λ

K (ξ, ξ�) = q
ξxetε(ξ)

f (ξ, ξ�)

and contour of integration encloses all singularities of the integrand.
� However, still unable to do asymptotic analysis! The operators K have

exponentially large norms as t → ∞.
� The idea is to replace K with operators with the same Fredholm

determinant but better behaved norms.



Limit Theorems

Theorem (TW) Let m = [σt], γ = q − p fixed, then

lim
t→∞

PZ+

�

xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3
�

= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√

σ,
c2(σ) = σ−1/6(1 −

√
σ)2/3.



Limit Theorems

Theorem (TW) Let m = [σt], γ = q − p fixed, then

lim
t→∞

PZ+

�

xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3
�

= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√

σ,
c2(σ) = σ−1/6(1 −

√
σ)2/3.

Theorem (ACQ, SS) Let

Zε(T ,X ) = p(T ,X )eFε(T ,X ), p = heat kernel

then

FT (s) = lim
ε→0

P(Fε(T ,X ) +
T

4!
≤ s) = KPZ crossover distribution

Remark: Explicit formulas for FT (s).



Corollary(ACQ, SS)

lim
T→∞

FT

�

2−1/3T 1/3s
�

= F2(s)

The KPZ Equation is in the KPZ Universality Class!



Corollary(ACQ, SS)

lim
T→∞

FT

�

2−1/3T 1/3s
�

= F2(s)
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Summary of KPZ Universality

� Scaling exponent 1
3 does not depend upon initial configuration

� Droplet initial conditions: Long time one-point fluctuations
described by F2.

� Flat initial conditions: Long time one-point fluctuations described by
F1. Not (yet) a rigorous proof of this for KPZ equation.

� Prähofer & Spohn made these theoretical predictions concerning
fluctuations on the basis of the PNG model.



Cast of Characters

Figure: K. Takeuchi, M. Sano, G. Amir, I. Corwin, J. Quastel



Figure: T. Sasamoto, H. Spohn, H. Widom
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