iCFP Masters program


Statistical physics
Frédéric van Wijland (MSC, Paris-Diderot), Maurizio Fagotti, Martin Lenz and Emmanuel Trizac (LPTMS, Paris-Sud/CNRS)

Schedule of the lectures
Mondays, 8.30am - 1pm, Paris-Diderot Campus
Halle Amphi 6C, tutorials in rooms 310B, 411B, 415B
or see the link


Outline of part A

Prerequisites (a midsummer night's work)     Solution

Homework 1 / warming up: Fourier transforms and correlation functions    

TD1: On the fluctuation theorem / Homework 2 (optional)
TD2: Nematic liquid crystals
TD3: Renormalization group: uses and applications

Statistical mechanics at the edge : Lee and Yang zeros
Circling again with Lee and Yang


Part B, M2 condensed matter + quantum physics: Frédéric van Wijland
Part B, M2 soft matter: Martin Lenz

Bibliography
Introduction to Modern Statistical Mechanics, D. Chandler, Oxford University Press
Statistical Mechanics of Phase Transitions, J. Yeomans, Oxford Science Publications
Principles of Condensed Matter Physics, P. Chaikin and T. Lubensky, Cambridge
Introduction to Statistical Field Theory, E. Brézin, Cambridge
Scaling and Renormalization in Statistical Physics, J. Cardy, Cambridge
Des phénomènes critiques aux champs de jauge, M. Le Bellac, EDP Sciences

In case some gaps need to be filled in complex analysis, linear algebra, probability theory...
Mathematics for Physics and Physicists, W. Appel, Princeton University Press
and for the gaps in basic stat mech / thermodynamics
Thermodynamics and an Introduction to Thermostatistics, H. Callen, John Wiley and Sons, or see Chandler's and Yeomans' books above

Some useful documents
A simple proof of Perron-Frobenius theorem for symmetric matrices
    There is a flaw in the argument... where?
van der Waals equation: critical exponents
Correlation function (and length) of Ising 1D ; solution


Back to main page