iCFP Masters program

Statistical physics
Frédéric van Wijland (MSC, Paris-Diderot), Maurizio Fagotti, Martin Lenz and Emmanuel Trizac (LPTMS, Paris-Sud/CNRS)

Schedule of the lectures
Mondays, 8.30am - 1pm, Paris-Diderot Campus
Halle Amphi 6C, tutorials in rooms 310B, 411B, 415B
or see the link

Outline of part A

Prerequisites (a midsummer night's work)     solution

Homework 1 / warming up: Fourier transforms and correlation functions     solution

TD1: On the fluctuation theorem / Homework 2 (optional)    solution
TD2: Nematic liquid crystals
TD3: Renormalization group: uses and applications

(exam 2016-2017) Statistical mechanics at the edge : Lee and Yang zeros     solution    
(exam 2017-2018) Circling again with Lee and Yang

(exam 2018-2019) A moving scheme : renormalization à la Migdal-Kadanoff     solution    

Part B, M2 condensed matter + quantum physics: Frédéric van Wijland
Part B, M2 soft matter: Martin Lenz

Introduction to Modern Statistical Mechanics, D. Chandler, Oxford University Press
Statistical Mechanics of Phase Transitions, J. Yeomans, Oxford Science Publications
Principles of Condensed Matter Physics, P. Chaikin and T. Lubensky, Cambridge
Introduction to Statistical Field Theory, E. Brézin, Cambridge
Scaling and Renormalization in Statistical Physics, J. Cardy, Cambridge
Des phénomènes critiques aux champs de jauge, M. Le Bellac, EDP Sciences

In case some gaps need to be filled in complex analysis, linear algebra, probability theory...
Mathematics for Physics and Physicists, W. Appel, Princeton University Press
and for the gaps in basic stat mech / thermodynamics
Thermodynamics and an Introduction to Thermostatistics, H. Callen, John Wiley and Sons, or see Chandler's and Yeomans' books above

Some useful documents
A simple proof of Perron-Frobenius theorem for symmetric matrices
    There is a flaw in the argument... where?
van der Waals equation: critical exponents
Correlation function (and length) of Ising 1D ; solution

Back to main page