Statistical physics

Frédéric van Wijland (MSC, Paris-Diderot), Maurizio Fagotti, Martin Lenz and Emmanuel Trizac (LPTMS, Paris-Sud/CNRS)

Schedule of the lectures

Mondays, 8.30am - 1pm, Paris-Diderot Campus

Halle Amphi 6C, tutorials in rooms 310B, 411B, 415B

Outline of part A

Prerequisites (a midsummer night's work) Solution

Homework 1 / warming up: Fourier transforms and correlation functions

TD1: On the fluctuation theorem / Homework 2 (optional)

TD2: Nematic liquid crystals

TD3: Renormalization group: uses and applications

Statistical mechanics at the edge : Lee and Yang zeros

Circling again with Lee and Yang

Part B, M2 condensed matter + quantum physics: Frédéric van Wijland

Part B, M2 soft matter: Martin Lenz

BibliographyIntroduction to Modern Statistical Mechanics, D. Chandler, Oxford University Press

Statistical Mechanics of Phase Transitions, J. Yeomans, Oxford Science Publications

Principles of Condensed Matter Physics, P. Chaikin and T. Lubensky, Cambridge

Introduction to Statistical Field Theory, E. Brézin, Cambridge

Scaling and Renormalization in Statistical Physics, J. Cardy, Cambridge

Des phénomènes critiques aux champs de jauge, M. Le Bellac, EDP Sciences

In case some gaps need to be filled in complex analysis, linear algebra, probability theory...

Mathematics for Physics and Physicists, W. Appel, Princeton University Press

and for the gaps in basic stat mech / thermodynamics

Thermodynamics and an Introduction to Thermostatistics, H. Callen, John Wiley and Sons, or see Chandler's and Yeomans' books above

Some useful documentsA simple proof of Perron-Frobenius theorem for symmetric matrices

There is a flaw in the argument... where?

van der Waals equation: critical exponents

Correlation function (and length) of Ising 1D ; solution